- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This work develops a fully discrete implicit-explicit finite element scheme for a parabolic-ordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology. The first-order backward Euler discretization for the time derivative, and an implicit-explicit discretization for the nonlinear reaction term are employed for the model, with a simple linearization technique used to make the process of solving equations more efficient. The stability and convergence of the fully discrete implicit-explicit finite element method are proved, which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained. The numerical results are also reported to verify the convergence results and the stability of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1901-m2017-0263}, url = {http://global-sci.org/intro/article_detail/jcm/15796.html} }This work develops a fully discrete implicit-explicit finite element scheme for a parabolic-ordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology. The first-order backward Euler discretization for the time derivative, and an implicit-explicit discretization for the nonlinear reaction term are employed for the model, with a simple linearization technique used to make the process of solving equations more efficient. The stability and convergence of the fully discrete implicit-explicit finite element method are proved, which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained. The numerical results are also reported to verify the convergence results and the stability of the proposed method.