- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to the establishment of sharper $a$ $priori$ stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem, which involves a viscosity $\nu$ and a reaction constant $\sigma$. With the establishment of sharper stability estimates and the help of $ad$ $hoc$ finite element projections, we can explicitly establish the dependence of error bounds of velocity and pressure on the viscosity $\nu$, the reaction constant $\sigma$, and the mesh size $h$. Our analysis reveals that the viscosity $\nu$ and the reaction constant $\sigma$ respectively act in the numerator position and the denominator position in the error estimates of velocity and pressure in standard norms without any weights. Consequently, the stabilization method is indeed suitable for the generalized Stokes problem with a small viscosity $\nu$ and a large reaction constant $\sigma$. The sharper error estimates agree very well with the numerical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1805-m2017-0192}, url = {http://global-sci.org/intro/article_detail/jcm/14517.html} }This paper is devoted to the establishment of sharper $a$ $priori$ stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem, which involves a viscosity $\nu$ and a reaction constant $\sigma$. With the establishment of sharper stability estimates and the help of $ad$ $hoc$ finite element projections, we can explicitly establish the dependence of error bounds of velocity and pressure on the viscosity $\nu$, the reaction constant $\sigma$, and the mesh size $h$. Our analysis reveals that the viscosity $\nu$ and the reaction constant $\sigma$ respectively act in the numerator position and the denominator position in the error estimates of velocity and pressure in standard norms without any weights. Consequently, the stabilization method is indeed suitable for the generalized Stokes problem with a small viscosity $\nu$ and a large reaction constant $\sigma$. The sharper error estimates agree very well with the numerical results.