- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We analyze the superconvergence property of the linear finite element method based on the polynomial preserving recovery (PPR) for Robin boundary elliptic problems on triangulations. First, we improve the convergence rate between the finite element solution and the linear interpolation under the $H^1$-norm by introducing a class of meshes satisfying the $Condition$ $(\alpha,\sigma,\mu)$. Then we prove the superconvergence of the recovered gradients post-processed by PPR and define an asymptotically exact a posteriori error estimator. Finally, numerical tests are provided to verify the theoretical findings.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1911-m2018-0176}, url = {http://global-sci.org/intro/article_detail/jcm/13692.html} }We analyze the superconvergence property of the linear finite element method based on the polynomial preserving recovery (PPR) for Robin boundary elliptic problems on triangulations. First, we improve the convergence rate between the finite element solution and the linear interpolation under the $H^1$-norm by introducing a class of meshes satisfying the $Condition$ $(\alpha,\sigma,\mu)$. Then we prove the superconvergence of the recovered gradients post-processed by PPR and define an asymptotically exact a posteriori error estimator. Finally, numerical tests are provided to verify the theoretical findings.