Volume 37, Issue 6
A Robust Interior Point Method for Computing the Analytic Center of an Ill-Conditioned Polytope with Errors

Zhouhong Wang ,  Yuhong Dai and Fengmin Xu

10.4208/jcm.1907-m2019-0016

J. Comp. Math., 37 (2019), pp. 843-865.

Preview Full PDF BiBTex 6 134
  • Abstract

In this paper we propose an efficient and robust method for computing the analytic center of the polyhedral set $P = \{x \in R^n \mid Ax = b, x \ge 0\}$, where the matrix $A \in R^{m\times n}$ is ill-conditioned, and there are errors in $A$ and $b$.  Besides overcoming the difficulties caused by ill-conditioning of the matrix $A$ and errors in $A$ and $b$, our method can also detect the infeasibility and the unboundedness of the polyhedral set $P$ automatically during the computation. Detailed mathematical  analyses  for our method are presented and the worst case complexity of  the algorithm is also given.  Finally some numerical results are  presented to show the robustness and  effectiveness of the new method.

  • History

Published online: 2019-11

  • AMS Subject Headings

65K05, 90C51

  • Cited by