- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we construct several efficient first-order splitting algorithms for solving a multi-block composite convex optimization problem. The objective function includes a smooth function with a Lipschitz continuous gradient, a proximable convex function that may be nonsmooth, and a finite sum composed of a proximable function and a bounded linear operator. To solve such an optimization problem, we transform it into the sum of three convex functions by defining an appropriate inner product space. Based on the dual forward-backward splitting algorithm and the primal-dual forward-backward splitting algorithm, we develop several iterative algorithms that involve only computing the gradient of the differentiable function and proximity operators of related convex functions. These iterative algorithms are matrix-inversion-free and completely splitting algorithms. Finally, we employ the proposed iterative algorithms to solve a regularized general prior image constrained compressed sensing model that is derived from computed tomography image reconstruction. Numerical results show that the proposed iterative algorithms outperform the compared algorithms including the alternating direction method of multipliers, the splitting primal-dual proximity algorithm, and the preconditioned splitting primal-dual proximity algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1808-m2018-0027}, url = {http://global-sci.org/intro/article_detail/jcm/13040.html} }In this paper, we construct several efficient first-order splitting algorithms for solving a multi-block composite convex optimization problem. The objective function includes a smooth function with a Lipschitz continuous gradient, a proximable convex function that may be nonsmooth, and a finite sum composed of a proximable function and a bounded linear operator. To solve such an optimization problem, we transform it into the sum of three convex functions by defining an appropriate inner product space. Based on the dual forward-backward splitting algorithm and the primal-dual forward-backward splitting algorithm, we develop several iterative algorithms that involve only computing the gradient of the differentiable function and proximity operators of related convex functions. These iterative algorithms are matrix-inversion-free and completely splitting algorithms. Finally, we employ the proposed iterative algorithms to solve a regularized general prior image constrained compressed sensing model that is derived from computed tomography image reconstruction. Numerical results show that the proposed iterative algorithms outperform the compared algorithms including the alternating direction method of multipliers, the splitting primal-dual proximity algorithm, and the preconditioned splitting primal-dual proximity algorithm.