- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper focuses on performance of several efficient and accurate numerical methods for the long-wave short-wave interaction equations in the semiclassical limit regime. The key features of the proposed methods are based on: (i) the utilization of the first-order or second-order time-splitting method to the nonlinear wave interaction equations; (ii) the application of Fourier pseudo-spectral method or compact finite difference approximation to the linear subproblem and the spatial derivatives; (iii) the adoption of the exact integration of the nonlinear subproblems and the ordinary differential equations in the phase space. The numerical methods under study are efficient, unconditionally stable and higher-order accurate, they are proved to preserve two invariants including the position density in $L^1$. Numerical results are reported for case studies with different types of initial data, these results verify the conservation laws in the discrete sense, show the dependence of the numerical solution on the time-step, mesh-size and dispersion parameter ε, and demonstrate the behavior of nonlinear dispersive waves in the semi-classical limit regime.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1807-m2015-0271}, url = {http://global-sci.org/intro/article_detail/jcm/13039.html} }This paper focuses on performance of several efficient and accurate numerical methods for the long-wave short-wave interaction equations in the semiclassical limit regime. The key features of the proposed methods are based on: (i) the utilization of the first-order or second-order time-splitting method to the nonlinear wave interaction equations; (ii) the application of Fourier pseudo-spectral method or compact finite difference approximation to the linear subproblem and the spatial derivatives; (iii) the adoption of the exact integration of the nonlinear subproblems and the ordinary differential equations in the phase space. The numerical methods under study are efficient, unconditionally stable and higher-order accurate, they are proved to preserve two invariants including the position density in $L^1$. Numerical results are reported for case studies with different types of initial data, these results verify the conservation laws in the discrete sense, show the dependence of the numerical solution on the time-step, mesh-size and dispersion parameter ε, and demonstrate the behavior of nonlinear dispersive waves in the semi-classical limit regime.