- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Let $Ω ⊂ \mathbb{R}^d$, $1 ≤ d ≤ 3$, be a bounded $d$-polytope. Consider the parabolic equation on $Ω$ with the Dirac delta function on the right hand side. We study the well-posedness, regularity, and the interior error estimate of semidiscrete finite element approximations of the equation. In particular, we derive that the interior error is bounded by the best local approximation error, the negative norms of the error, and the negative norms of the time derivative of the error. This result implies different convergence rates for the numerical solution in different interior regions, especially when the region is close to the singular point. Numerical test results are reported to support the theoretical prediction.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1804-m2017-0240}, url = {http://global-sci.org/intro/article_detail/jcm/13002.html} }Let $Ω ⊂ \mathbb{R}^d$, $1 ≤ d ≤ 3$, be a bounded $d$-polytope. Consider the parabolic equation on $Ω$ with the Dirac delta function on the right hand side. We study the well-posedness, regularity, and the interior error estimate of semidiscrete finite element approximations of the equation. In particular, we derive that the interior error is bounded by the best local approximation error, the negative norms of the error, and the negative norms of the time derivative of the error. This result implies different convergence rates for the numerical solution in different interior regions, especially when the region is close to the singular point. Numerical test results are reported to support the theoretical prediction.