- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
For the stationary Wigner equation with inflow boundary conditions, the numerical convergence with respect to the velocity mesh size are deteriorated due to the singularity at velocity zero. In this paper, using the fact that the solution of the stationary Wigner equation is subject to an integral constraint, we prove that the Wigner equation can be written into a form with a bounded operator $\mathcal{B}[V]$, which is equivalent to the operator $\mathcal{A}[V] = Θ[V]/v$ in the original Wigner equation under some conditions. Then the discrete operators discretizing $\mathcal{B}[V]$ are proved to be uniformly bounded with respect to the mesh size. Based on the theoretical findings, a singularity-free numerical method is proposed. Numerical results are provided to show our improved numerical scheme performs much better in numerical convergence than the original scheme based on discretizing $\mathcal{A}[V]$.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1711-m2017-0097}, url = {http://global-sci.org/intro/article_detail/jcm/12675.html} }For the stationary Wigner equation with inflow boundary conditions, the numerical convergence with respect to the velocity mesh size are deteriorated due to the singularity at velocity zero. In this paper, using the fact that the solution of the stationary Wigner equation is subject to an integral constraint, we prove that the Wigner equation can be written into a form with a bounded operator $\mathcal{B}[V]$, which is equivalent to the operator $\mathcal{A}[V] = Θ[V]/v$ in the original Wigner equation under some conditions. Then the discrete operators discretizing $\mathcal{B}[V]$ are proved to be uniformly bounded with respect to the mesh size. Based on the theoretical findings, a singularity-free numerical method is proposed. Numerical results are provided to show our improved numerical scheme performs much better in numerical convergence than the original scheme based on discretizing $\mathcal{A}[V]$.