- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We establish a class of improved relaxed positive-definite and skew-Hermitian splitting (IRPSS) preconditioners for saddle point problems. These preconditioners are easier to be implemented than the relaxed positive-definite and skew-Hermitian splitting (RPSS) preconditioner at each step for solving the saddle point problem. We study spectral properties and the minimal polynomial of the IRPSS preconditioned saddle point matrix. A theoretical optimal IRPSS preconditioner is also obtained. Numerical results show that our proposed IRPSS preconditioners are superior to the existing ones in accelerating the convergence rate of the GMRES method for solving saddle point problems.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1710-m2017-0065}, url = {http://global-sci.org/intro/article_detail/jcm/12651.html} }We establish a class of improved relaxed positive-definite and skew-Hermitian splitting (IRPSS) preconditioners for saddle point problems. These preconditioners are easier to be implemented than the relaxed positive-definite and skew-Hermitian splitting (RPSS) preconditioner at each step for solving the saddle point problem. We study spectral properties and the minimal polynomial of the IRPSS preconditioned saddle point matrix. A theoretical optimal IRPSS preconditioner is also obtained. Numerical results show that our proposed IRPSS preconditioners are superior to the existing ones in accelerating the convergence rate of the GMRES method for solving saddle point problems.