- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the recovery of block sparse signals, whose nonzero entries appear in blocks (or clusters) rather than spread arbitrarily throughout the signal, from incomplete linear measurements. A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise, and robust recovery when signals are not exactly block sparse via mixed $l_2/l_1$ minimization. Moreover, a concrete example is established to ensure the condition is sharp. The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1710-m2017-0175}, url = {http://global-sci.org/intro/article_detail/jcm/12649.html} }In this paper, we consider the recovery of block sparse signals, whose nonzero entries appear in blocks (or clusters) rather than spread arbitrarily throughout the signal, from incomplete linear measurements. A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise, and robust recovery when signals are not exactly block sparse via mixed $l_2/l_1$ minimization. Moreover, a concrete example is established to ensure the condition is sharp. The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.