- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new two-level subspace method is proposed for solving the general unconstrained minimization formulations discretized from infinite-dimensional optimization problems. At each iteration, the algorithm executes either a direct step on the current level or a coarse subspace correction step. In the coarse subspace correction step, we augment the traditional coarse grid space by a two-dimensional subspace spanned by the coordinate direction and the gradient direction at the current point. Global convergence is proved and convergence rate is studied under some mild conditions on the discretized functions. Preliminary numerical experiments on a few variational problems show that our two-level subspace method is promising.
A new two-level subspace method is proposed for solving the general unconstrained minimization formulations discretized from infinite-dimensional optimization problems. At each iteration, the algorithm executes either a direct step on the current level or a coarse subspace correction step. In the coarse subspace correction step, we augment the traditional coarse grid space by a two-dimensional subspace spanned by the coordinate direction and the gradient direction at the current point. Global convergence is proved and convergence rate is studied under some mild conditions on the discretized functions. Preliminary numerical experiments on a few variational problems show that our two-level subspace method is promising.