- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The preconditioner for parameterized inexact Uzawa methods has been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1702-m2016-0665}, url = {http://global-sci.org/intro/article_detail/jcm/12306.html} }The preconditioner for parameterized inexact Uzawa methods has been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.