- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tend to provide a better description for transport or conduction processes in heterogeneous media. However, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsened by the large number of random space dimensions to discretize the probability space. We approximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1612-m2016-0696}, url = {http://global-sci.org/intro/article_detail/jcm/12258.html} }We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tend to provide a better description for transport or conduction processes in heterogeneous media. However, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsened by the large number of random space dimensions to discretize the probability space. We approximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.