- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 36 (2018), pp. 159-182.
Published online: 2018-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We consider stochastic semi-linear evolution equations which are driven by additive, spatially correlated, Wiener noise, and in particular consider problems of heat equation (analytic semigroup) and damped-driven wave equations (bounded semigroup) type. We discretize these equations by means of a spectral Galerkin projection, and we study the approximation of the probability distribution of the trajectories: test functions are regular, but depend on the values of the process on the interval [0, T].
We introduce a new approach in the context of quantative weak error analysis for discretization of SPDEs. The weak error is formulated using a deterministic function (Itô map) of the stochastic convolution found when the nonlinear term is dropped. The regularity properties of the Itô map are exploited, and in particular second-order Taylor expansions employed, to transfer the error from spectral approximation of the stochastic convolution into the weak error of interest.
We prove that the weak rate of convergence is twice the strong rate of convergence in two situations. First, we assume that the covariance operator commutes with the generator of the semigroup: the first order term in the weak error expansion cancels out thanks to an independence property. Second, we remove the commuting assumption, and extend the previous result, thanks to the analysis of a new error term depending on a commutator.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1607-m2016-0539}, url = {http://global-sci.org/intro/article_detail/jcm/12254.html} }We consider stochastic semi-linear evolution equations which are driven by additive, spatially correlated, Wiener noise, and in particular consider problems of heat equation (analytic semigroup) and damped-driven wave equations (bounded semigroup) type. We discretize these equations by means of a spectral Galerkin projection, and we study the approximation of the probability distribution of the trajectories: test functions are regular, but depend on the values of the process on the interval [0, T].
We introduce a new approach in the context of quantative weak error analysis for discretization of SPDEs. The weak error is formulated using a deterministic function (Itô map) of the stochastic convolution found when the nonlinear term is dropped. The regularity properties of the Itô map are exploited, and in particular second-order Taylor expansions employed, to transfer the error from spectral approximation of the stochastic convolution into the weak error of interest.
We prove that the weak rate of convergence is twice the strong rate of convergence in two situations. First, we assume that the covariance operator commutes with the generator of the semigroup: the first order term in the weak error expansion cancels out thanks to an independence property. Second, we remove the commuting assumption, and extend the previous result, thanks to the analysis of a new error term depending on a commutator.