- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper concerns the reconstruction of a penetrable obstacle embedded in a waveguide using the scattered data due to point sources, which is formulated as an optimization problem. We propose a fast reconstruction method based on a carefully designed finite element scheme for the direct scattering problem. The method has several merits: 1) the linear sampling method is used to quickly obtain a good initial guess; 2) finite Fourier series are used to approximate the boundary of the obstacle, which is decoupled from the boundary used by the finite element method; and 3) the mesh is fixed and hence the stiffness matrix, mass matrix, and right hand side are assembled once and only minor changes are made at each iteration. The effectiveness of the proposed method is demonstrated by numerical examples.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1610-m2016-0559}, url = {http://global-sci.org/intro/article_detail/jcm/10581.html} }This paper concerns the reconstruction of a penetrable obstacle embedded in a waveguide using the scattered data due to point sources, which is formulated as an optimization problem. We propose a fast reconstruction method based on a carefully designed finite element scheme for the direct scattering problem. The method has several merits: 1) the linear sampling method is used to quickly obtain a good initial guess; 2) finite Fourier series are used to approximate the boundary of the obstacle, which is decoupled from the boundary used by the finite element method; and 3) the mesh is fixed and hence the stiffness matrix, mass matrix, and right hand side are assembled once and only minor changes are made at each iteration. The effectiveness of the proposed method is demonstrated by numerical examples.