- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation $AXB = C$ has been presented. As the theoretical analysis shows, the MHSS iteration method will converge under certain conditions. Each iteration in this method requires the solution of four linear matrix equations with real symmetric positive definite coefficient matrices, although the original coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter of the new iteration method is proposed. Numerical results show that MHSS iteration method is efficient and robust.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1601-m2015-0416}, url = {http://global-sci.org/intro/article_detail/jcm/10419.html} }In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation $AXB = C$ has been presented. As the theoretical analysis shows, the MHSS iteration method will converge under certain conditions. Each iteration in this method requires the solution of four linear matrix equations with real symmetric positive definite coefficient matrices, although the original coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter of the new iteration method is proposed. Numerical results show that MHSS iteration method is efficient and robust.