- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents a fast algorithm (BS2 Algorithm) for fitting $C^1$ surfaces to scattered data points. By using energy minimization, the bivariate spline space $S^1_2(∆^{(2)}_{m,n})$ is introduced to construct a $C^1$-continuous piecewise quadratic surface through a set of irregularly 3D points. Moreover, a multilevel method is also presented. Some experimental results show that the accuracy is satisfactory. Furthermore, the BS2 Algorithm is more suitable for fitting surfaces if the given data points have some measurement errors.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1101-m3203}, url = {http://global-sci.org/intro/article_detail/jcm/10385.html} }This paper presents a fast algorithm (BS2 Algorithm) for fitting $C^1$ surfaces to scattered data points. By using energy minimization, the bivariate spline space $S^1_2(∆^{(2)}_{m,n})$ is introduced to construct a $C^1$-continuous piecewise quadratic surface through a set of irregularly 3D points. Moreover, a multilevel method is also presented. Some experimental results show that the accuracy is satisfactory. Furthermore, the BS2 Algorithm is more suitable for fitting surfaces if the given data points have some measurement errors.