- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we perform a nonlinear multiscale analysis for incompressible Euler equations with rapidly oscillating initial data. The initial condition for velocity field is assumed to have two scales. The fast scale velocity component is periodic and is of order one. One of the important questions is how the two-scale velocity structure propagates in time and whether nonlinear interaction will generate more scales dynamically. By using a Lagrangian framework to describe the propagation of small scale solution, we show that the two-scale structure is preserved dynamically. Moreover, we derive a well-posed homogenized equation for the incompressible Euler equations. Preliminary numerical experiments are presented to demonstrate that the homogenized equation captures the correct averaged solution of the incompressible Euler equation.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10325.html} }In this paper, we perform a nonlinear multiscale analysis for incompressible Euler equations with rapidly oscillating initial data. The initial condition for velocity field is assumed to have two scales. The fast scale velocity component is periodic and is of order one. One of the important questions is how the two-scale velocity structure propagates in time and whether nonlinear interaction will generate more scales dynamically. By using a Lagrangian framework to describe the propagation of small scale solution, we show that the two-scale structure is preserved dynamically. Moreover, we derive a well-posed homogenized equation for the incompressible Euler equations. Preliminary numerical experiments are presented to demonstrate that the homogenized equation captures the correct averaged solution of the incompressible Euler equation.