- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper attempts to develop kinetic flux vector splitting (KFVS) for the Euler equations with general pressure laws. It is well known that the gas distribution function for the local equilibrium state plays an important role in the construction of the gas–kinetic schemes. To recover the Euler equations with a general equation of state (EOS), a new local equilibrium distribution is introduced with two parameters of temperature approximation decided uniquely by macroscopic variables. Utilizing the well-known connection that the Euler equations of motion are the moments of the Boltzmann equation whenever the velocity distribution function is a local equilibrium state, a class of high resolution MUSCL–type KFVS schemes are presented to approximate the Euler equations of gas dynamics with a general EOS. The schemes are finally applied to several test problems for a general EOS. In comparison with the exact solutions, our schemes give correct location and more accurate resolution of discontinuities. The extension of our idea to multidimensional case is natural.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10311.html} }This paper attempts to develop kinetic flux vector splitting (KFVS) for the Euler equations with general pressure laws. It is well known that the gas distribution function for the local equilibrium state plays an important role in the construction of the gas–kinetic schemes. To recover the Euler equations with a general equation of state (EOS), a new local equilibrium distribution is introduced with two parameters of temperature approximation decided uniquely by macroscopic variables. Utilizing the well-known connection that the Euler equations of motion are the moments of the Boltzmann equation whenever the velocity distribution function is a local equilibrium state, a class of high resolution MUSCL–type KFVS schemes are presented to approximate the Euler equations of gas dynamics with a general EOS. The schemes are finally applied to several test problems for a general EOS. In comparison with the exact solutions, our schemes give correct location and more accurate resolution of discontinuities. The extension of our idea to multidimensional case is natural.