- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Let $P$ be an $n\times n$ symmetric orthogonal matrix. A real $n\times n$ matrix $A$ is called P-symmetric nonnegative definite if $A$ is symmetric nonnegative definite and $(PA)^T=PA$. This paper is concerned with a kind of inverse problem for P-symmetric nonnegative definite matrices: Given a real $n\times n$ matrix $\widetilde{A}$, real $n\times m$ matrices $X$ and $B$, find an $n\times n$ P-symmetric nonnegative definite matrix $A$ minimizing $||A-\widetilde{A}||_F$ subject to $AX =B$. Necessary and sufficient conditions are presented for the solvability of the problem. The expression of the solution to the problem is given. These results are applied to solve an inverse eigenvalue problem for P-symmetric nonnegative definite matrices.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10295.html} }Let $P$ be an $n\times n$ symmetric orthogonal matrix. A real $n\times n$ matrix $A$ is called P-symmetric nonnegative definite if $A$ is symmetric nonnegative definite and $(PA)^T=PA$. This paper is concerned with a kind of inverse problem for P-symmetric nonnegative definite matrices: Given a real $n\times n$ matrix $\widetilde{A}$, real $n\times m$ matrices $X$ and $B$, find an $n\times n$ P-symmetric nonnegative definite matrix $A$ minimizing $||A-\widetilde{A}||_F$ subject to $AX =B$. Necessary and sufficient conditions are presented for the solvability of the problem. The expression of the solution to the problem is given. These results are applied to solve an inverse eigenvalue problem for P-symmetric nonnegative definite matrices.