- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Least-squares solution of $AXB = D$ with respect to symmetric positive semidefinite matrix $X$ is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10270.html} }Least-squares solution of $AXB = D$ with respect to symmetric positive semidefinite matrix $X$ is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.