- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new kind of matrix-valued rational interpolants is recursively established by means of generalized Samelson inverse for matrices, with scalar numerator and matrix-valued denominator. In this respect, it is essentially different from that of the previous works [7, 9], where the matrix-valued rational interpolants is in Thiele-type continued fraction form with matrix-valued numerator and scalar denominator. For both univariate and bivariate cases, sufficient conditions for existence, characterisation and uniqueness in some sense are proved respectively, and an error formula for the univariate interpolating function is also given. The results obtained in this paper are illustrated with some numerical examples.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10268.html} }A new kind of matrix-valued rational interpolants is recursively established by means of generalized Samelson inverse for matrices, with scalar numerator and matrix-valued denominator. In this respect, it is essentially different from that of the previous works [7, 9], where the matrix-valued rational interpolants is in Thiele-type continued fraction form with matrix-valued numerator and scalar denominator. For both univariate and bivariate cases, sufficient conditions for existence, characterisation and uniqueness in some sense are proved respectively, and an error formula for the univariate interpolating function is also given. The results obtained in this paper are illustrated with some numerical examples.