- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Alternating directions method is one of the approaches for solving linearly constrained separate monotone variational inequalities. Experience on applications has shown that the number of iteration significantly depends on the penalty for the system of linearly constrained equations and therefore the method with variable penalties is advantageous in practice. In this paper, we extend the Kontogiorgis and Meyer method [12] by removing the monotonicity assumption on the variable penalty matrices. Moreover, we introduce a self-adaptive rule that leads the method to be more efficient and insensitive for various initial penalties. Numerical results for a class of Fermat-Weber problems show that the modified method and its self-adaptive technique are proper and necessary in practice.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10253.html} }Alternating directions method is one of the approaches for solving linearly constrained separate monotone variational inequalities. Experience on applications has shown that the number of iteration significantly depends on the penalty for the system of linearly constrained equations and therefore the method with variable penalties is advantageous in practice. In this paper, we extend the Kontogiorgis and Meyer method [12] by removing the monotonicity assumption on the variable penalty matrices. Moreover, we introduce a self-adaptive rule that leads the method to be more efficient and insensitive for various initial penalties. Numerical results for a class of Fermat-Weber problems show that the modified method and its self-adaptive technique are proper and necessary in practice.