- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
It is well-known that if we have an approximate eigenvalue $\widehat{\lambda}$ of a normal matrix $A$ of order $n$, a good approximation to the corresponding eigenvector $u$ can be computed by one inverse iteration provided the position, say $k_{max}$, of the largest component of $u$ is known. In this paper we give a detailed theoretical analysis to show relations between the eigenvector $u$ and vector $x_k,k=1,\cdots,n$, obtained by simple inverse iteration, i.e., the solution to the system $(A-\widehat{\lambda}I)x=e_k$ with $e_k$ the $k$th column of the identity matrix $I$. We prove that under some weak conditions, the index $k_{max}$ is of some optimal properties related to the smallest residual and smallest approximation error to $u$ in spectral norm and Froenius norm. We also prove that the normalized absolute vector $v=|u|/\|u\|_\infty$ of $u$ can be approximated by the normalized vector of $(\|x_1\|_2,\cdots,\|x_n\|_2)^T$. We also give some upper bounds of $|u(k)|$ for those "optimal" indexes such as Fernando's heuristic for $k_{max}$ without any assumptions. A stable double orthogonal factorization method and a simpler but may less stable approach are proposed for locating the largest component of $u$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10244.html} }It is well-known that if we have an approximate eigenvalue $\widehat{\lambda}$ of a normal matrix $A$ of order $n$, a good approximation to the corresponding eigenvector $u$ can be computed by one inverse iteration provided the position, say $k_{max}$, of the largest component of $u$ is known. In this paper we give a detailed theoretical analysis to show relations between the eigenvector $u$ and vector $x_k,k=1,\cdots,n$, obtained by simple inverse iteration, i.e., the solution to the system $(A-\widehat{\lambda}I)x=e_k$ with $e_k$ the $k$th column of the identity matrix $I$. We prove that under some weak conditions, the index $k_{max}$ is of some optimal properties related to the smallest residual and smallest approximation error to $u$ in spectral norm and Froenius norm. We also prove that the normalized absolute vector $v=|u|/\|u\|_\infty$ of $u$ can be approximated by the normalized vector of $(\|x_1\|_2,\cdots,\|x_n\|_2)^T$. We also give some upper bounds of $|u(k)|$ for those "optimal" indexes such as Fernando's heuristic for $k_{max}$ without any assumptions. A stable double orthogonal factorization method and a simpler but may less stable approach are proposed for locating the largest component of $u$.