- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
N Dimensional Finite Wavelet Filters
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-21-595,
author = {Peng , Si-Long},
title = {N Dimensional Finite Wavelet Filters},
journal = {Journal of Computational Mathematics},
year = {2003},
volume = {21},
number = {5},
pages = {595--602},
abstract = {
In this paper, a large class of $n$ dimensional orthogonal and biorthogonal wavelet filters (lowpass and highpass) are presented in explicit expression. We also characterize orthogonal filters with linear phase in this case. Some examples are also given, including nonseparable orthogonal and biorthogonal filters with linear phase.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10239.html} }
TY - JOUR
T1 - N Dimensional Finite Wavelet Filters
AU - Peng , Si-Long
JO - Journal of Computational Mathematics
VL - 5
SP - 595
EP - 602
PY - 2003
DA - 2003/10
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10239.html
KW - $n$ Dimension, Linear phase, Wavelet filters.
AB -
In this paper, a large class of $n$ dimensional orthogonal and biorthogonal wavelet filters (lowpass and highpass) are presented in explicit expression. We also characterize orthogonal filters with linear phase in this case. Some examples are also given, including nonseparable orthogonal and biorthogonal filters with linear phase.
Peng , Si-Long. (2003). N Dimensional Finite Wavelet Filters.
Journal of Computational Mathematics. 21 (5).
595-602.
doi:
Copy to clipboard