- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Quasi-Newton Algorithm Without Calculating Derivatives for Unconstrained Optimization
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-12-380,
author = {Sun , Lin-Ping},
title = {A Quasi-Newton Algorithm Without Calculating Derivatives for Unconstrained Optimization},
journal = {Journal of Computational Mathematics},
year = {1994},
volume = {12},
number = {4},
pages = {380--386},
abstract = {
A new algorithm for unconstrained optimization is developed, by using the product form of the OCSSR1 update. The implementation is especially useful when gradient information is estimated by difference formulae. Preliminary tests show that new algorithm can perform well.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10220.html} }
TY - JOUR
T1 - A Quasi-Newton Algorithm Without Calculating Derivatives for Unconstrained Optimization
AU - Sun , Lin-Ping
JO - Journal of Computational Mathematics
VL - 4
SP - 380
EP - 386
PY - 1994
DA - 1994/12
SN - 12
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10220.html
KW -
AB -
A new algorithm for unconstrained optimization is developed, by using the product form of the OCSSR1 update. The implementation is especially useful when gradient information is estimated by difference formulae. Preliminary tests show that new algorithm can perform well.
Sun , Lin-Ping. (1994). A Quasi-Newton Algorithm Without Calculating Derivatives for Unconstrained Optimization.
Journal of Computational Mathematics. 12 (4).
380-386.
doi:
Copy to clipboard