- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new polynomial formulation of variable step size linear multistep methods is presented, where each k-step method is characterized by a fixed set of $k-1$ or $k$ parameters. This construction includes all methods of maximal order ($p=k$ for stiff, and $p=k+1$ for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are implemented in Matlab, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multistep method construction and implementation compares favorably to existing software, although variable order has not yet been included.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1611-m2015-0404}, url = {http://global-sci.org/intro/article_detail/jcm/10037.html} }A new polynomial formulation of variable step size linear multistep methods is presented, where each k-step method is characterized by a fixed set of $k-1$ or $k$ parameters. This construction includes all methods of maximal order ($p=k$ for stiff, and $p=k+1$ for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are implemented in Matlab, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multistep method construction and implementation compares favorably to existing software, although variable order has not yet been included.