- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider two different formulations (one is smooth and the other one is nonsmooth) for solving linear matrix inequalities (LMIs), an important class of semidefinite programming (SDP), under a certain Slater constraint qualification assumption. We then propose two first-order methods, one based on subgradient method and the other based on Nesterov's optimal method, and show that they converge linearly for solving these formulations. Moreover, we introduce an accelerated prox-level method which converges linearly uniformly for both smooth and non-smooth problems without requiring the input of any problem parameters. Finally, we consider a special case of LMIs, i.e., linear system of inequalities, and show that a linearly convergent algorithm can be obtained under a much weaker assumption.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1612-m2016-0703}, url = {http://global-sci.org/intro/article_detail/jcm/10026.html} }In this paper, we consider two different formulations (one is smooth and the other one is nonsmooth) for solving linear matrix inequalities (LMIs), an important class of semidefinite programming (SDP), under a certain Slater constraint qualification assumption. We then propose two first-order methods, one based on subgradient method and the other based on Nesterov's optimal method, and show that they converge linearly for solving these formulations. Moreover, we introduce an accelerated prox-level method which converges linearly uniformly for both smooth and non-smooth problems without requiring the input of any problem parameters. Finally, we consider a special case of LMIs, i.e., linear system of inequalities, and show that a linearly convergent algorithm can be obtained under a much weaker assumption.