Volume 5, Issue 2
Properties of Spin Polarization State of Two-Electron System on Two-Dimensional Quantum Dots with Magnetic Field

Wuyunqimuge, Wei Xin, Chao Han & Eerdunchaolu

J. At. Mol. Sci., 5 (2014), pp. 100-109.

Published online: 2014-05

Export citation
  • Abstract

Influence of the magnetic field on the energy of the spin polarization state of a two-electron system in two-dimensional quantum dots (QDs) is studied by using the method of few-body physics. As example, a numerical calculation is performed for a GaAs semiconductor QD to show the variations of the ground-state energy $E_0,$ the spin-singlet energy $E_1(A)$ and spin-triplet energy $E_1(S)$ of the first excited state and the energy difference (i.e. $\Delta E(A)$ and $\Delta E(S)$) between the first excited and ground states with the effective radius $R_0$ of the QD and the magnetic field $B.$ The results show that $E_0$ increases with increasing $B,$ but decreases with increasing $R_0;$ in the magnetic field, the spin-singlet energy $E_1(A)$ of the first excited state splits into two levels as $E_{1+1}(A)$ and $E_{1-1}(A),$ the spin-triplet energy $E_1(S)$ of the first excited state splits into two sets as $E_{1+1}(S)$ and $E_{1-1}(S),$ and each set consists of three "fine structures" which correspond to $M_S=1,0,-1,$ respectively; each energy level (set, energy difference) decreases with increasing $R_0,$ but there are great differences among the changes of them with $B$: $E_{1+1}(A),$ $E^{M_S}_{1+1}(S),$ $\Delta E_{1+1}(A),$ and $\Delta E^{M_S}_{1+1}(S)$ increase significantly with increasing $B,$ but the variations of $E_{1-1}(A),$ $E^{M_S}_{1-1}(S),$ $\Delta E_{1-1}(A),$ and $\Delta E^{M_S}_{1-1}(S)$ with B are relatively slow; the splitting degree of each energy level (set, energy difference) is proportional to the first power of the magnetic field $B.$

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

eerdunchaolu@163.com ( Eerdunchaolu)

  • BibTex
  • RIS
  • TXT
@Article{JAMS-5-100, author = {Wuyunqimuge , Xin , WeiHan , Chao and Eerdunchaolu , }, title = {Properties of Spin Polarization State of Two-Electron System on Two-Dimensional Quantum Dots with Magnetic Field}, journal = {Journal of Atomic and Molecular Sciences}, year = {2014}, volume = {5}, number = {2}, pages = {100--109}, abstract = {

Influence of the magnetic field on the energy of the spin polarization state of a two-electron system in two-dimensional quantum dots (QDs) is studied by using the method of few-body physics. As example, a numerical calculation is performed for a GaAs semiconductor QD to show the variations of the ground-state energy $E_0,$ the spin-singlet energy $E_1(A)$ and spin-triplet energy $E_1(S)$ of the first excited state and the energy difference (i.e. $\Delta E(A)$ and $\Delta E(S)$) between the first excited and ground states with the effective radius $R_0$ of the QD and the magnetic field $B.$ The results show that $E_0$ increases with increasing $B,$ but decreases with increasing $R_0;$ in the magnetic field, the spin-singlet energy $E_1(A)$ of the first excited state splits into two levels as $E_{1+1}(A)$ and $E_{1-1}(A),$ the spin-triplet energy $E_1(S)$ of the first excited state splits into two sets as $E_{1+1}(S)$ and $E_{1-1}(S),$ and each set consists of three "fine structures" which correspond to $M_S=1,0,-1,$ respectively; each energy level (set, energy difference) decreases with increasing $R_0,$ but there are great differences among the changes of them with $B$: $E_{1+1}(A),$ $E^{M_S}_{1+1}(S),$ $\Delta E_{1+1}(A),$ and $\Delta E^{M_S}_{1+1}(S)$ increase significantly with increasing $B,$ but the variations of $E_{1-1}(A),$ $E^{M_S}_{1-1}(S),$ $\Delta E_{1-1}(A),$ and $\Delta E^{M_S}_{1-1}(S)$ with B are relatively slow; the splitting degree of each energy level (set, energy difference) is proportional to the first power of the magnetic field $B.$

}, issn = {2079-7346}, doi = {https://doi.org/10.4208/jams.090313.120113a}, url = {http://global-sci.org/intro/article_detail/jams/8305.html} }
TY - JOUR T1 - Properties of Spin Polarization State of Two-Electron System on Two-Dimensional Quantum Dots with Magnetic Field AU - Wuyunqimuge , AU - Xin , Wei AU - Han , Chao AU - Eerdunchaolu , JO - Journal of Atomic and Molecular Sciences VL - 2 SP - 100 EP - 109 PY - 2014 DA - 2014/05 SN - 5 DO - http://doi.org/10.4208/jams.090313.120113a UR - https://global-sci.org/intro/article_detail/jams/8305.html KW - quantum dot, method of few-body physics, electron-electron interaction, spin polarization state. AB -

Influence of the magnetic field on the energy of the spin polarization state of a two-electron system in two-dimensional quantum dots (QDs) is studied by using the method of few-body physics. As example, a numerical calculation is performed for a GaAs semiconductor QD to show the variations of the ground-state energy $E_0,$ the spin-singlet energy $E_1(A)$ and spin-triplet energy $E_1(S)$ of the first excited state and the energy difference (i.e. $\Delta E(A)$ and $\Delta E(S)$) between the first excited and ground states with the effective radius $R_0$ of the QD and the magnetic field $B.$ The results show that $E_0$ increases with increasing $B,$ but decreases with increasing $R_0;$ in the magnetic field, the spin-singlet energy $E_1(A)$ of the first excited state splits into two levels as $E_{1+1}(A)$ and $E_{1-1}(A),$ the spin-triplet energy $E_1(S)$ of the first excited state splits into two sets as $E_{1+1}(S)$ and $E_{1-1}(S),$ and each set consists of three "fine structures" which correspond to $M_S=1,0,-1,$ respectively; each energy level (set, energy difference) decreases with increasing $R_0,$ but there are great differences among the changes of them with $B$: $E_{1+1}(A),$ $E^{M_S}_{1+1}(S),$ $\Delta E_{1+1}(A),$ and $\Delta E^{M_S}_{1+1}(S)$ increase significantly with increasing $B,$ but the variations of $E_{1-1}(A),$ $E^{M_S}_{1-1}(S),$ $\Delta E_{1-1}(A),$ and $\Delta E^{M_S}_{1-1}(S)$ with B are relatively slow; the splitting degree of each energy level (set, energy difference) is proportional to the first power of the magnetic field $B.$

Wuyunqimuge , Xin , WeiHan , Chao and Eerdunchaolu , . (2014). Properties of Spin Polarization State of Two-Electron System on Two-Dimensional Quantum Dots with Magnetic Field. Journal of Atomic and Molecular Sciences. 5 (2). 100-109. doi:10.4208/jams.090313.120113a
Copy to clipboard
The citation has been copied to your clipboard