@Article{JAMS-7-207,
author = {Feng , HairanLi , PengYue , Xianfang and Zheng , Yujun},
title = {Algebraic Approach to Geometric Quantum Speed Limits in Triatomic Molecules},
journal = {Journal of Atomic and Molecular Sciences},
year = {2016},
volume = {7},
number = {4},
pages = {207--212},
abstract = {
The appropriate metric of quantum speed limit for the triatomic molecules
is discussed using a generalized geometric approach. The researches show the quantum
Fisher information metric is tighter than the Wigner-Yanase information metric in
realistic molecular dynamical evolution. The quantum speed limit metric is related to
the initial evolution state of molecules.
},
issn = {2079-7346},
doi = {https://doi.org/10.4208/jams.062016.081216a},
url = {http://global-sci.org/intro/article_detail/jams/8160.html}
}
TY - JOUR
T1 - Algebraic Approach to Geometric Quantum Speed Limits in Triatomic Molecules
AU - Feng , Hairan
AU - Li , Peng
AU - Yue , Xianfang
AU - Zheng , Yujun
JO - Journal of Atomic and Molecular Sciences
VL - 4
SP - 207
EP - 212
PY - 2016
DA - 2016/07
SN - 7
DO - http://doi.org/10.4208/jams.062016.081216a
UR - https://global-sci.org/intro/article_detail/jams/8160.html
KW - Lie-algebra, quantum speed limit, triatomic molecules.
AB -
The appropriate metric of quantum speed limit for the triatomic molecules
is discussed using a generalized geometric approach. The researches show the quantum
Fisher information metric is tighter than the Wigner-Yanase information metric in
realistic molecular dynamical evolution. The quantum speed limit metric is related to
the initial evolution state of molecules.
Feng , HairanLi , PengYue , Xianfang and Zheng , Yujun. (2016). Algebraic Approach to Geometric Quantum Speed Limits in Triatomic Molecules.
Journal of Atomic and Molecular Sciences. 7 (4).
207-212.
doi:10.4208/jams.062016.081216a
Copy to clipboard