Volume 9, Issue 1
Theoretical Elaboration about Excited State Behaviors and Fluoride Anion Sensor Mechanism for 2-{[2-(2-Hydroxy-Phenyl)-1H-Benzoimidazo-5-yl]-Phenyl-Methylene} Malononitrile

Jia Li, Xiaodong Li, Shibo Cheng, Peng Song & Jinfeng Zhao

J. At. Mol. Sci., 9 (2018), pp. 1-6.

Published online: 2018-10

Export citation
  • Abstract

In view of the enormous potential of fluorescence chemosensors in recent years, more and more people focus on their developments. In the present work, we theoretically investigate a novel fluorescence sensor 2-{[2-(2-Hydroxy-phenyl)-1H-benzoimidazo-5-yl]-phenyl-methylene}-malononitrile (HBPMM) [J. Lumin. 2016, 173, 165] about its excited state intramolecular proton transfer (ESIPT) and probe response mechanism. Based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, we focus on the $S_0$-state and $S_1$-state hydrogen bonds dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the $S_1$ state may promote the ESIPT reaction. In view of the photoexcitation, we find that the charge redistribution around hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify the ESIPT process of HBPMM should be ultrafast. That is the reason why the normal HBPMM fluorescence cannot be detected in previous experiment. Further, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O-H•••F. It reveals the uniqueness of detecting fluoride anion using HBPMM molecule. As a whole, the fluoride anion inhibits the initial ESIPT process of HBPMM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion sensing mechanism for the novel HBPMM chemosensor.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JAMS-9-1, author = {Jia Li, Xiaodong Li, Shibo Cheng, Peng Song and Jinfeng Zhao}, title = {Theoretical Elaboration about Excited State Behaviors and Fluoride Anion Sensor Mechanism for 2-{[2-(2-Hydroxy-Phenyl)-1H-Benzoimidazo-5-yl]-Phenyl-Methylene} Malononitrile}, journal = {Journal of Atomic and Molecular Sciences}, year = {2018}, volume = {9}, number = {1}, pages = {1--6}, abstract = {

In view of the enormous potential of fluorescence chemosensors in recent years, more and more people focus on their developments. In the present work, we theoretically investigate a novel fluorescence sensor 2-{[2-(2-Hydroxy-phenyl)-1H-benzoimidazo-5-yl]-phenyl-methylene}-malononitrile (HBPMM) [J. Lumin. 2016, 173, 165] about its excited state intramolecular proton transfer (ESIPT) and probe response mechanism. Based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, we focus on the $S_0$-state and $S_1$-state hydrogen bonds dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the $S_1$ state may promote the ESIPT reaction. In view of the photoexcitation, we find that the charge redistribution around hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify the ESIPT process of HBPMM should be ultrafast. That is the reason why the normal HBPMM fluorescence cannot be detected in previous experiment. Further, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O-H•••F. It reveals the uniqueness of detecting fluoride anion using HBPMM molecule. As a whole, the fluoride anion inhibits the initial ESIPT process of HBPMM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion sensing mechanism for the novel HBPMM chemosensor.

}, issn = {2079-7346}, doi = {https://doi.org/10.4208/jams.011818.042318a}, url = {http://global-sci.org/intro/article_detail/jams/12739.html} }
TY - JOUR T1 - Theoretical Elaboration about Excited State Behaviors and Fluoride Anion Sensor Mechanism for 2-{[2-(2-Hydroxy-Phenyl)-1H-Benzoimidazo-5-yl]-Phenyl-Methylene} Malononitrile AU - Jia Li, Xiaodong Li, Shibo Cheng, Peng Song & Jinfeng Zhao JO - Journal of Atomic and Molecular Sciences VL - 1 SP - 1 EP - 6 PY - 2018 DA - 2018/10 SN - 9 DO - http://doi.org/10.4208/jams.011818.042318a UR - https://global-sci.org/intro/article_detail/jams/12739.html KW - Intramolecular hydrogen bond, Fluoride anion, Charge transfer, ESIPT, MOs. AB -

In view of the enormous potential of fluorescence chemosensors in recent years, more and more people focus on their developments. In the present work, we theoretically investigate a novel fluorescence sensor 2-{[2-(2-Hydroxy-phenyl)-1H-benzoimidazo-5-yl]-phenyl-methylene}-malononitrile (HBPMM) [J. Lumin. 2016, 173, 165] about its excited state intramolecular proton transfer (ESIPT) and probe response mechanism. Based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, we focus on the $S_0$-state and $S_1$-state hydrogen bonds dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the $S_1$ state may promote the ESIPT reaction. In view of the photoexcitation, we find that the charge redistribution around hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify the ESIPT process of HBPMM should be ultrafast. That is the reason why the normal HBPMM fluorescence cannot be detected in previous experiment. Further, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O-H•••F. It reveals the uniqueness of detecting fluoride anion using HBPMM molecule. As a whole, the fluoride anion inhibits the initial ESIPT process of HBPMM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion sensing mechanism for the novel HBPMM chemosensor.

Jia Li, Xiaodong Li, Shibo Cheng, Peng Song and Jinfeng Zhao. (2018). Theoretical Elaboration about Excited State Behaviors and Fluoride Anion Sensor Mechanism for 2-{[2-(2-Hydroxy-Phenyl)-1H-Benzoimidazo-5-yl]-Phenyl-Methylene} Malononitrile. Journal of Atomic and Molecular Sciences. 9 (1). 1-6. doi:10.4208/jams.011818.042318a
Copy to clipboard
The citation has been copied to your clipboard