- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Numerical simulation of fluid flow and transport processes in the subsurface must account for the presence of wells. The pressure at a gridblock that contains a well is different from the average pressure in that block and different from the flowing bottom hole pressure for the well [17]. Various finite difference well models have been developed to account for the difference. This paper presents a systematical derivation of well models for other numerical methods such as standard finite element, control volume finite element, and mixed finite element methods. Numerical results for a simple well example illustrating local grid refinement effects are given to validate these well models. The well models have particular applications to groundwater hydrology and petroleum reservoirs.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/773.html} }Numerical simulation of fluid flow and transport processes in the subsurface must account for the presence of wells. The pressure at a gridblock that contains a well is different from the average pressure in that block and different from the flowing bottom hole pressure for the well [17]. Various finite difference well models have been developed to account for the difference. This paper presents a systematical derivation of well models for other numerical methods such as standard finite element, control volume finite element, and mixed finite element methods. Numerical results for a simple well example illustrating local grid refinement effects are given to validate these well models. The well models have particular applications to groundwater hydrology and petroleum reservoirs.