- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider a moving boundary problem with kinetic condition that describes the diffusion of solvent into rubber and study semi-discrete finite element approximations of the corresponding weak solutions. We report on both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Our working techniques include integral and energy-based estimates for a nonlinear parabolic problem posed in a transformed fixed domain combined with a suitable use of the interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM approximations are within the experimental range and show good agreement with our theoretical investigation. This work is a preliminary investigation necessary before extending the current moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture a directional swelling of the underlying elastomer.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/20351.html} }We consider a moving boundary problem with kinetic condition that describes the diffusion of solvent into rubber and study semi-discrete finite element approximations of the corresponding weak solutions. We report on both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Our working techniques include integral and energy-based estimates for a nonlinear parabolic problem posed in a transformed fixed domain combined with a suitable use of the interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM approximations are within the experimental range and show good agreement with our theoretical investigation. This work is a preliminary investigation necessary before extending the current moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture a directional swelling of the underlying elastomer.