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ERROR ESTIMATES FOR SEMI-DISCRETE FINITE ELEMENT

APPROXIMATIONS FOR A MOVING BOUNDARY PROBLEM

CAPTURING THE PENETRATION OF DIFFUSANTS INTO

RUBBER

SURENDRA NEPAL, YOSIEF WONDMAGEGNE, AND ADRIAN MUNTEAN

Abstract. We consider a moving boundary problem with kinetic condition that describes the
diffusion of solvent into rubber and study semi-discrete finite element approximations of the cor-

responding weak solutions. We report on both a priori and a posteriori error estimates for the
mass concentration of the diffusants, and respectively, for the a priori unknown position of the
moving boundary. Our working techniques include integral and energy-based estimates for a non-

linear parabolic problem posed in a transformed fixed domain combined with a suitable use of the
interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM
approximations are within the experimental range and show good agreement with our theoretical
investigation. This work is a preliminary investigation necessary before extending the current

moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture
a directional swelling of the underlying elastomer.

Key words. Moving boundary problem, finite element method, method of lines, a priori error
estimate, a posteriori error estimate, diffusion of chemicals into rubber.

1. Introduction

Sharp interfaces moving in an a priori unknown way inside materials play a
key role in a number of study cases in science and technology, including in the
forecast of the durability of cementitious-based materials (cf. e.g. [24, 5, 11, 26]),
large-time behavior of chemical species from the environment slowly penetrating
by diffusion and swelling rubber-based materials (cf. e.g. [25, 27, 1]), to control-
ling phase transitions like melting and freezing or solid-solid changes in concrete
(cf. e.g. [10, 29, 21]), to mention but a few. Due to the inherent non-linearity of
such moving boundary problems, analytical representations of solutions are often
either unavailable or not computable. Hence, one has to rely on direct computa-
tional approaches to get insight for instance in the behavior of large times of such
moving sharp interfaces, as this usually defines the lifetime of the material under
investigation.

In the framework of this paper, we study a semi-discrete finite element approx-
imation of weak solutions to a one dimensional moving boundary problem that
models the diffusion of solvent into rubber (see Section 2). This is a follow-up
study of our recent work [1], where we proposed a finite element approximation
of solutions to a moving boundary problem which we used to recover experimental
data. Now, we explore the quality of our approximation scheme. Specifically, we re-
port on both a priori and a posteriori error estimates for the mass concentration of
the diffusants, and respectively, for the position of the moving boundary. Our work-
ing techniques include integral and energy-based estimates for the corresponding
nonlinear parabolic problem posed in a transformed fixed domain, combined with a
suitable use of the interpolation-trace inequality to handle the interface terms. At
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the technical level, we were very much inspired by the references: [6, 32, 30, 28],
and [5]. It is worth noting that similar work has been done in related contexts. For
instance, in [24], the authors show the convergence of a numerical scheme obtained
by combining an Euler discretization in time with a Scharfetter-Gummel discretiza-
tion in space for a concrete carbonation model with moving boundary reformulated
for a fixed space domain. In [26], A. Zurek studies the long time regime of the
moving interface driving the concrete carbonation reaction model by tailoring an
implicit in time and finite volume in space scheme. He proves that the approximate
free boundary increases in time with

√
t-law as theoretically predicted in [31]. In

[23], one develops an adaptive moving mesh method for the numerical solution of
an enthalpy formulation of a class of heat-conduction problems with phase change.
The main aim of [22] is to provide a comparison of several numerical methods in-
cluding displacing level sets, moving grids, and diffusing phase fields to address two
well-known Stefan problems arising as best formulations for phase transformation-
s like melting of a pure phase and diffusional solid-state phase changes in binary
systems.

To handle our problem, we decided to use the finite element method as this fits
best to the regularity of the (weak) solutions to our moving boundary problem.
Mind though that other discretization methods are likely to be applicable as well.
As our work is purely in 1D and no expensive computations are expected, and as,
on top of this, we wish to rely on open source facilities, we chose Python for the
implementation work.

We present here a preliminary investigation of this class of problems. This
is necessary before extending the current moving boundary modeling to account
explicitly for the mechanics of hyperelastic rods to capture a directional swelling of
the underlying elastomer. In this spirit, a natural next step would be to perform
the numerical analysis of a two-scale finite element approximation of the setup
described in [25].

The outline of this study is as follows: We formulate our moving boundary
problem in Section 2. The discussion of the setting of the model equations is
based on [1]. We collect in Section 3 our basic assumptions on parameters and
model components, as well as notations and existing preliminary results. Section
4 contains the fixed domain transformation of our problem and the definition of
our concept of weak solutions which is then the subject of error approximation
estimates investigated here. Benefiting of the mathematical analysis done for our
problem in [3, 4], we are able to prove the global existence of weak solutions to
the semi-discrete problem and obtain the needed uniform boundedness results to
produce convergent numerical schemes. As main result, we obtain a priori and a
posteriori error estimates as listed in Section 5. A couple of numerical experiments
are discussed in Section 6. Essentially, they support numerically the available
experimental results. Finally, a brief conclusion of this work is outlined in Section
7.

2. Model equations

We consider a thin slab of a dense rubber, denoted by Ω of vertical length L > 0,
placed in contact with a diffusant reservoir. When the diffusant concentration at
the bottom face of the rubber exceeds some threshold, the diffusant moves into
the rubber creating a sharp interface that separates the rubber Ω into two parts,
the diffusant free region and diffusant-penetrated region. Our region of interest is
the diffusant-penetrated part where the diffusant’s flux is assumed to satisfy Fick’s
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law. The actual problem is to find the diffusant concentration profile inside the
diffusant-penetrated region and the location of the moving interface separating the
penetrated from the not-yet penetrated region. Such a setting is referred to as
a one-phase moving boundary problem. Formulations as a two-phase boundary
problem are possible as well, but are currently not in our focus; see e.g. [16] for a
nicely written textbook regarding modeling with moving interfaces.

In this work, the modeling domain is the onedimensional slab shown in Figure
1, which is the longitudinal line where 0 < s(0) ≤ s(t) ≤ L. For a fixed observa-
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Figure 1. Sketch of one dimensional geometry – a macroscopic
thin slab made of rubber.

tion time Tf ∈ (0,∞), the interval [0, Tf ] is the time span of the process we are
considering. Let x ∈ [0, s(t)] and t ∈ [0, Tf ] denote the space and respectively time
variable, and let m(t, x) be the concentration of diffusant placed in position x at
time t. The diffusants concentration m(t, x) acts in the region Qs(Tf ) defined by

Qs(Tf ) := {(t, x)|t ∈ (0, Tf ) and x ∈ (0, s(t))}.

The problem reads: Find m(t, x) and the position of the moving interface x = s(t)
for t ∈ (0, Tf ) such that the couple (m(t, x), s(t)) satisfies the following

∂m

∂t
−D

∂2m

∂x2
= 0 in Qs(Tf ),(1)

−D
∂m

∂x
(t, 0) = β(b(t)−Hm(t, 0)) for t ∈ (0, Tf ),(2)

−D
∂m

∂x
(t, s(t)) = s′(t)m(t, s(t)) for t ∈ (0, Tf ),(3)

s′(t) = a0(m(t, s(t))− σ(s(t)) for t ∈ (0, Tf ),(4)

m(0, x) = m0(x) for x ∈ [0, s(0)],(5)

s(0) = s0 > 0 with 0 < s0 < s(t) < L,(6)

where a0 > 0 is a kinetic coefficient, β is a positive constant, D > 0 is a diffusion
constant, H > 0 is the Henry’s constant, σ is a function on R, b is a given boundary
function on [0, T ], and s0 > 0 is the initial position of the free boundary and m0 is
the initial concentration of the diffusant.

The boundary condition (3) describes the mass conservation of diffusant con-
centration at the moving boundary. It indicates that the diffusion mechanism is
responsible for pushing the interface. In particular (4) points out that the mechan-
ical behaviour (here it is about the swelling of the rubber) also contributes to the
motion of the moving penetration front. The explanation of the model equations
and the physical meaning of the parameters are given in [1].
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3. Notations, assumptions and preliminaries

In this section, we list our basic assumptions on the data, notations as well
as approximation properties of functions that are required for the error analysis
discussed in the next sections.

3.1. Function spaces and elementary inequalities. Let u, v : Ω → R denote
two generic functions. Let W r,p(Ω) be the Sobolev space on domain Ω for 1 ≤ p ≤
∞ and r ≥ 0. For r = 0, we simply write Lp(Ω) in place of W 0,p(Ω) with the norm
∥ · ∥Lp(Ω) defined as follows:

∥u∥Lp(Ω) :=


(∫

Ω

|u(x)|pdx
) 1

p

for 1 ≤ p <∞,

ess sup{|u(x)| : x ∈ Ω} for p = ∞,

For p = 2 and r ≥ 1, we write Hr(Ω) in place of W r,2(Ω) with the norm ∥ · ∥Hr(Ω)

defined by

∥u∥Hr(Ω) =

∑
|α|≤r

∫
Ω

|∂αu|2dx

 1
2

.(7)

In (7) ∂αu denotes the α’th derivative of u in the weak sense. Furthermore, for
L2(Ω) and Hr(Ω) we have the following inner products.

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x)dx,

(u, v)Hr(Ω) :=
∑
|α|≤r

(∂ru, ∂rv)L2(Ω).

Let X be a Banach space with norm ∥ · ∥X and v : [0, T ] → X be a function.
Correspondingly, Lp(0, T,X) is a Bochner space endowed with the norms

∥v∥Lp(0,T,X) :=


(∫ T

0

∥v(τ)∥pXdτ

) 1
p

for 1 ≤ p <∞,

sup
0≤τ≤T

∥v(τ)∥X for p = ∞.

More information on Sobolev and Bochner spaces with their various norms and
inner products can be found for instance in [8, 9]. For the convenience of writing,
we denote u(t, 0) and u(t, 1) by u(0) and u(1), respectively. We also use the prime
(′) to point out the derivative with respect to time variable, and ∥ · ∥ and (·, ·) for
the norm and, respectively, inner product in L2(Ω). Furthermore, ∥ · ∥∞ refers to
the norm of L∞(Ω).
We list a few elementary inequalities that we frequently use in this work.

(i) Young’s inequality:

ab ≤ ξap + cξb
q,(8)

where a, b ∈ R+, ξ > 0, cξ :=
1

q

1
p
√
(ξp)q

> 0,
1

p
+

1

q
= 1 and p ∈ (1,∞).

(ii) Interpolation inequality: For all u ∈ H1(0, 1), there exists a constant ĉ > 0
depending on θ ∈ [ 12 , 1) such that

∥u∥∞ ≤ ĉ∥u∥θ ∥u∥1−θ
H1(0,1) .(9)
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For θ = 1/2, one gets

∥u∥2∞ ≤ ĉ

(
ξ

∥∥∥∥∂u∂y
∥∥∥∥2 + (ξ + cξ)∥u∥2

)
,

where ξ and cξ are as in (8). See details in [19] p. 285 (example 21.62).

3.2. Assumptions on parameters. Throughout this paper, we assume the fol-
lowing restrictions on the parameters.

(A1) a0, H, D, s0, Tf are positive constants.
(A2) b ∈W 1,2(0, Tf ) with 0 < b∗ ≤ b ≤ b∗ on (0, Tf ), where b∗ and b∗ are positive

constants.
(A3) β ∈ C1(R) ∩W 1,∞(R) such that β = 0 on (∞, 0], and there exists rβ > 0

such that β′ > 0 on (0, rβ) and β = k0 on [rβ ,+∞), where k0 > 0.
(A4) σ ∈ C1(R) ∩W 1,∞(R) such that σ = 0 on (−∞, 0), and there exists rσ such

that σ′ > 0 on (0, rσ) and σ = c0 on [rσ,+∞), where c0 satisfies

0 < c0 < min{2σ(0), b∗H−1}.(10)

(A5) 0 < s0 < rσ and m0 ∈ H1(0, s0) such that σ(0) ≤ u0 ≤ b∗H−1 on [0, s0].

The assumptions (A1)–(A5) are adopted from [4], where the authors have proved
the global solvability of the problem and continuous dependence estimates of the
solution with respect to the initial data.

3.3. Basic facts from approximation theory. Let N ∈ N be given. We set
0 = y0 < y1 < · · · < yN−1 = 1 as discretization points in the interval [0, 1]. We set
ki := yi+1 − yi for i ∈ {0, 1, · · · , N − 2} and k := max{ki : i ∈ {0, 1, · · · , N − 2}}.
We introduce the space

Vk := {ν ∈ C[0, 1] : ν|[yj ,yj+1] ∈ P1},(11)

where P1 represents the set of polynomials of degree one. Let {ϕi}N−1
i=0 be the set

of basis functions for the space Vk defined by

ϕi(y) =



0 if y < yi−1
y − yi−1

ki−1
if yi−1 ≤ y < yi

yi+1 − y

ki
if yi ≤ y < yi+1

0 if yi+1 ≤ y.

We define the interpolation operator Ik : C[0, 1] → Vk by

(Iku)(y) :=
N−1∑
i=0

u(yi, t)ϕi(y).

Here the function Iku is called the Lagrange interpolant of u of degree 1; for more
details see e.g. [2].

Lemma 3.1. Take θ ∈ [ 12 , 1) and ψ ∈ H2(0, 1). Then there exist strictly positive
constants γ1, γ2 and γ3 such that the Lagrange interpolant Ikψ of ψ satisfies the
following estimates:

(i) ∥ψ − Ikψ∥ ≤ γ1k
2∥ψ∥H2(0,1)

(ii)

∥∥∥∥ ∂∂y (ψ − Ikψ)

∥∥∥∥ ≤ γ2k∥ψ∥H2(0,1)

(iii) |ψ(0)− Ikψ(0)| ≤ ĉ
(
γ1k

2 + γ3k
1+θ
)
∥ψ∥H2(0,1)
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(iv) |ψ(1)− Ikψ(1)| ≤ ĉ
(
γ1k

2 + γ3k
1+θ
)
∥ψ∥H2(0,1)

Proof. The inequalities (i) and (ii) are standard results. For details on their proof,
see for instance page 61 in [2] and page 3 in [17]. To show (iii), we use the interpo-
lation inequality (9) together with (i) and (ii) to obtain

|ψ(0)− Ikψ(0)| ≤ ĉ∥ψ − Ikψ∥θL2(0,1) ∥ψ − Ikψ∥1−θ
H1(0,1)

≤ ĉ∥ψ − Ikψ∥θL2(0,1)

(
∥ψ − Ikψ∥1−θ +

∥∥∥∥ ∂∂y (ψ − Ikψ)

∥∥∥∥1−θ
)

≤ ĉ
(
γ1k

2 + γθ1γ
1−θ
2 k1+θ

)
∥ψ∥H2(0,1).

Taking γ3 := γθ1γ
1−θ
2 gives the estimate (iii). A similar argument applied to ψ(1)

gives (iv). �
4. Fixed-domain transformation and definition of weak solutions

Firstly, we perform the non-dimensionalization of the model equations (1)–(6).
We then transform the non-dimensional model equations from the a priori un-
known non-cylinderical domain into the cylinderical domain Q(T ) := {(τ, y)| τ ∈
(0, T ) and y ∈ (0, 1)} by using the Landau transformation y = x/s(t), see for
instance [18]. For more details on non-dimensionalization and transformation, we
refer the reader to [1] where the preliminary steps are done. In dimensionless form,
the transformed problem reads as follows:

∂u

∂τ
− y

h′(τ)

h(τ)

∂u

∂y
− 1

(h(τ))2
∂2u

∂y2
= 0 in Q(T ),(12)

− 1

h(τ)

∂u

∂y
(τ, 0) = Bi

(
b(τ)

m0
−Hu(τ, 0)

)
for τ ∈ (0, T ),(13)

− 1

h(τ)

∂u

∂y
(τ, 1) = h′(τ)u(τ, 1) for τ ∈ (0, T ),(14)

h′(τ) = A0

(
u(τ, 1)− σ(h(τ))

m0

)
for τ ∈ (0, T )(15)

u(0, y) = u0(y) for y ∈ [0, 1],(16)

h(0) = h0.(17)

We refer to the system (12)–(17) posed in the cylinderical domain Q(T ) as problem
(P ).

Remark 4.1. We refer the reader to [1] for the definition of dimensionless quanti-
ties u, h, τ, y, T, Bi, A0. Here we only mention that Bi is the mass transfer Biot
number and A0 is the Thiele modulus.

Definition 4.1. (Weak Solution to (P )). We call the couple (u, h) a weak solution
to problem (P ) on ST := (0, T ) if and only if

h ∈W 1,∞(ST ) with h0 < h(T ) ≤ L,

u ∈W 1,2(Q(T )) ∩ L∞(ST ,H
1(0, 1)) ∩ L2(ST ,H

2(0, 1)),

such that for all τ ∈ ST the following relations hold(
∂u

∂τ
, φ

)
− h′(τ)

h(τ)

(
y
∂u

∂y
, φ

)
+

1

(h(τ))2

(
∂u

∂y
,
∂φ

∂y

)
− 1

h(τ)
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
φ(0)
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+
h′(τ)

h(τ)
u(τ, 1)φ(1) = 0 for all φ ∈ H1(0, 1),(18)

h′(τ) = A0

(
u(τ, 1)− σ(h(τ))

m0

)
,(19)

u(0, y) = u0(y) for y ∈ [0, 1],(20)

h(0) = h0.(21)

Theorem 4.1. If (A1)–(A5) hold, then problem (P ) has a unique solution (u, h)
on ST in the sense of Definition 4.1.

Proof. We refer the reader to Theorem 2.4 in [3] for a statement of the local exis-
tence of weak solutions to problem (P ) and to Theorem 3.3 and Theorem 3.4 in [4]
for a way to ensure the global existence and continuous dependence with respect
to initial data. �

We now define the finite element Galerkin approximation to (18)–(21) on the
finite dimensional subspace Vk. The semi-discrete approximation uk and hk of u
and h is now defined to be the mapping uk : [0, T ] → Vk and hk : [0, T ] → R+ such
that (22)–(25) holds. We denote the semi-discrete form (22)–(25) of problem (P )
by (Pd).

Definition 4.2. (Weak Solution to (Pd)). We call the couple (uk, hk) a weak
solution to problem (Pd) if and only if there is a ST := (0, T ) (for some T > 0)
such that

hk ∈W 1,∞(ST ) with h0 < hk(T ) ≤ L

uk ∈ H1(ST , Vk) ∩ L2(ST ,H
1(0, 1)) ∩ L∞(ST , L

2(0, 1))

and for all τ ∈ ST it holds(
∂uk
∂τ

, φk

)
− h′k(τ)

hk(τ)

(
y
∂uk
∂y

, φk

)
+

1

(hk(τ))2

(
∂uk
∂y

,
∂φk

∂y

)
− 1

hk(τ)
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
φk(0)

+
h′k(τ)

hk(τ)
uk(τ, 1)φk(1) = 0 for all φk ∈ Vk,(22)

h′k(τ) = A0

(
uk(τ, 1)−

σ(hk(τ))

m0

)
,(23)

uk(0) = u0,k(y) for y ∈ [0, 1],(24)

hk(0) = h0.(25)

Lemma 4.1. Assume (A1)–(A5) hold. Then there exist a time T̂ ∈ (0, T ] and
positive constants L,M1,M2 (not depending on k) such that for a.e. τ ∈ (0, T̄ ) the
following inequalities hold true for the pair (uk, hk) arising in Definition 4.2:

(i) 0 < h0 ≤ hk(τ) ≤ L
(ii) 0 < uk(τ, y) < M1

(iii) |h′k(τ)| ≤M2.

Proof. (i) is built in the concept of weak solution detailed in Definition 4.2. It does
not require a proof. We added it here simply to stress the importance of the fact
the we work exclusively in a bounded moving domain. (ii) is the main statement
here. This holds true as a consequence of the fact that the space continuous version
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of the statement (i.e. 0 < u(τ, y) < M1) holds true; we rely on the arguments of
the proof of Theorem 3.1 in [4], combined with the fact that the treated geometry

is one dimensional. Hence, T̂ > 0 is possibly small, which is sufficient for deriving
our next results. Note though that a discrete version of the Stampacchia trick,
worked out with details in [33], can potentially be applied here as well in order to

replace the local time T̂ with a maximal time. Alternative arguments employing
the structure of the problem as in [35] or based on linear simplicial finite elements
as in [34] can also be used in principle. (iii) is a direct consequence of (i) and (ii)
combined with (23).

�

Theorem 4.2. Let the hypothesis of Lemma 4.1 be fulfilled. Then it exists a unique
solution

(uk, hk) ∈ H1(ST̂ , Vk) ∩ L
2(ST̂ ,H

1(0, 1)) ∩ L∞(ST̂ , L
2(0, 1))×W 1,∞(ST̂ )

in the sense of Definition 4.2. Furthermore, there exists a constant c̃ > 0 (indepen-
dent of k) such that

max
0≤τ≤T̂

∥uk∥2L2(0,1) +

∫ T̂

0

∥∥∥∥∂uk∂y
∥∥∥∥2
L2(0,1)

dτ ≤ c̃.(26)

Proof. Let Vk be the finite dimensional subspace defined in (11) constructed based

on the span of the hat functions {ϕj}, j ∈ {0, 1, · · · , N − 1}. Let αj : (0, T̂ ) → R
denote the Galerkin projection coefficient for jth degree of freedom. Then the
finite-dimensional Galerkin approximation of the function u is defined by

uk(τ, y) :=
N−1∑
j=0

αj(τ)ϕj(y),

where the coefficients αj(τ), j ∈ {0, 1, . . . N − 1} are determined by the following
relations:(

∂uk
∂τ

, φk

)
− h′k(τ)

hk(τ)

(
y
∂uk
∂y

, φk

)
+

1

(hk(τ))2

(
∂uk
∂y

,
∂φk

∂y

)
− 1

hk(τ)
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
φk(0) +

h′k(τ)

hk(τ)
uk(τ, 1)φk(1) = 0,(27)

h′k(τ) = A0

(
uk(τ, 1)−

σ(hk(τ))

m0

)
, τ ∈ (0, T̂ )(28)

for all φk ∈ span{ϕj}, j ∈ {0, 1, · · · , N − 1} and

αj(0) = (u0,k, ϕj),(29)

hk(0) = h0.(30)

Taking in (27) and (28) as test function φk = ϕj for j ∈ {0, 1, · · · , N − 1}, we
obtain the following system of ordinary differential equations for the unknown α =
(αj)j=0,1,··· ,N−1 and hk:

N−1∑
i=0

Miα
′
i(τ)−

h′k
hk

N−1∑
i=0

Kiαi +
1

h2k

N−1∑
i=0

Aiαi

=
1

hk
Bi

(
b(τ)

m0
ϕ(0)−Hα

)
− h′k
hk
α =: G1(α, hk),(31)
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h′k(τ) = A0

(
N−1∑
i=0

αiϕi(1)−
σ(hk(τ))

m0

)
=: G2(α, hk),(32)

where

(Mi)j :=

∫ 1

0

ϕiϕjdy,(33)

(Ki)j :=

∫ 1

0

y
∂ϕi
∂y

ϕjdy,(34)

(Ai)j :=

∫ 1

0

∂ϕi
∂y

∂ϕj
∂y

dy.(35)

Firstly, we prove that G2 is Lipschitz. Let (α, hk) and (β, h̃k) be two pairs.∣∣∣G2(α, hk)−G2(β, h̃k)
∣∣∣

≤ A0

(
N−1∑
i=0

|αi(τ)− βi(τ)| |ϕi(1)|+
1

m0

∣∣∣σ(hk(τ))− σ(h̃k(τ))
∣∣∣) .(36)

Using (A4) in (36), we get∣∣∣G2(α, hk)−G2(β, h̃k)
∣∣∣ ≤ A0

(
N−1∑
i=0

|αi(τ)− βi(τ)| |ϕi(1)|+
L
m0

∣∣∣hk(τ)− h̃k(τ)
∣∣∣)

≤ M

(
N−1∑
i=0

|αi(τ)− βi(τ)|+
∣∣∣hk(τ)− h̃k(τ)

∣∣∣)
= M|(α, hk)− (β, h̃k)|,

where L is a Lipschitz constant and

M := max

{
A0 max

0≤i≤N−1
|ϕi(1)|,

A0L
m0

}
.

Thus, G2 is Lipschitz. Now, we show that G1 is Lipschitz.

G1(α, hk)−G1(β, h̃k) =Bi
b(τ)

m0

(
1

hk
− 1

h̃k

)
ϕ(0)

− BiH

(
α

hk
− β

h̃k

)
−

(
h′k
hk
α− h̃′k

h̃k
β

)
.(37)

Using (A2) in (37) yields∣∣∣G1(α, hk)−G1(β, h̃k)
∣∣∣ ≤ Bi

b∗

m0hkh̃k
|hk − h̃k||ϕ(0)|

+BiH

∣∣∣∣ αhk − β

h̃k

∣∣∣∣+
∣∣∣∣∣h′khkα− h̃′k

h̃k
β

∣∣∣∣∣
=

3∑
ℓ=1

Iℓ,

where

I1 := Bi
b∗

m0hkh̃k
|hk − h̃k||ϕ(0)| ≤ Bi

b∗

m0hkh̃k
|hk − h̃k|,
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I2 := BiH

∣∣∣∣ αhk − β

h̃k

∣∣∣∣ ≤ BiH

(
|α| |hk − h̃k|

hkh̃k
+

|α− β|
h̃k

)
,

I3 :=

∣∣∣∣∣h′khkα− h̃′k
h̃k
β

∣∣∣∣∣
=

∣∣∣∣h′k ( α

hk
− β

h̃k

)
+

β

h̃k

(
h′k − h̃′k

)∣∣∣∣
≤ |h′k|

∣∣∣∣ αhk − β

h̃k

∣∣∣∣+ L |β|
|h̃k|

∣∣∣hk − h̃k

∣∣∣
≤ |h′k|

(
|α| |hk − h̃k|

hkh̃k
+

|α− β|
h̃k

)
+ L |β|

|h̃k|

∣∣∣hk − h̃k

∣∣∣ .
This shows that G1 is Lipschitz continuous. By standard arguments for systems of
ordinary differential equations, the problem (29)-(32) has a unique solution

(α, hk) ∈ C1([0, T̂ ])N ×W 1,∞(0, T̂ ).

We now prove the uniform estimate for the solution u to the finite dimensional
problem.
Taking φ = uk in (27) yields

1

2

d

dτ
∥uk(τ)∥2 +

1

(hk(τ))2

∥∥∥∥∂uk(τ)∂y

∥∥∥∥2 =

∫ 1

0

h′k
hk
y
∂uk
∂y

ukdy

+
1

hk(τ)
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
uk(τ, 0) +

h′k(τ)

hk(τ)
uk(τ, 1)uk(τ, 1).(38)

Using Hölders inequality for the first term on the right hand side of (38), it holds
that

1

2

d

dτ
∥uk(τ)∥2 +

1

(hk(τ))2

∥∥∥∥∂uk(τ)∂y

∥∥∥∥2 ≤ |h′k|
hk

∥∥∥∥∂uk∂y
∥∥∥∥
L2(Ω)

∥uk∥L2(Ω)

+
Bi

hk

b∗

m0
|uk(τ, 0)|+

|h′k|
hk

|uk(τ, 1)|2 .(39)

We note here that, by the Sobolev’s embedding inequality in one space dimension,
it holds

|ϑ(τ, y)|2 ≤ Ce ∥ϑ(τ)∥H1(0,1) ∥ϑ(τ)∥L2(0,1) for ϑ ∈ H1(0, 1) and y ∈ [0, 1],(40)

where Ce is a positive constant. Using (40), the third term on the right hand side
of (39) becomes

|h′k|
hk

|uk(τ, 1)|2 ≤ Ce

∥h′k∥L∞(ST̂ )

h0
∥uk(τ)∥H1(0,1) ∥uk(τ)∥L2(0,1)

≤ Ce

∥h′k∥L∞(ST̂ )

h0

(∥∥∥∥∂uk(τ)∂y

∥∥∥∥
L2(0,1)

∥uk(τ)∥L2(0,1) + ∥uk(τ)∥2L2(0,1)

)
.(41)

Using (41), (39) becomes

1

2

d

dτ
∥uk∥2 +

1

(hk)2

∥∥∥∥∂uk∂y
∥∥∥∥2 ≤(1 + Ce)

∥h′k∥L∞(ST̂ )

h0

∥∥∥∥∂uk∂y
∥∥∥∥
L2(0,1)

∥uk∥L2(0,1)

+ Ce

∥h′k∥L∞(ST̂ )

h0
∥uk∥2L2(0,1) +

1

h0

b∗

m0
∥uk∥H1(0,1).(42)
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Using Young’s inequality, (42) leads to

1

2

d

dτ
∥uk∥2 +

1

2L2

∥∥∥∥∂uk∂y
∥∥∥∥2 ≤(1 + Ce)

∥h′k∥L∞(ST̂ )

h0

(
ξ

∥∥∥∥∂uk∂y
∥∥∥∥2
L2(0,1)

+ cξ ∥uk∥2L2(0,1)

)

+ Ce

∥h′k∥L∞(ST̂ )

h0
∥uk∥2L2(0,1) + ξ

∥∥∥∥∂uk∂y
∥∥∥∥2
L2(0,1)

+ ξ ∥uk∥2L2(0,1) +
cξ
h20

(b∗)2

m2
0

.

Finally, we get the following inequality

1

2

d

dτ
∥uk∥2 +M1

∥∥∥∥∂uk∂y
∥∥∥∥2 ≤M2 ∥uk∥2L2(0,1) +M3,(43)

where

M1 :=
1

2L2
−

(
(1 + Ce)

∥h′k∥L∞(ST̂ )

h0
+ 1

)
ξ,

M2 :=
∥h′k∥L∞(ST̂ )

h0
(cξ + Ce(cξ + 1)) + ξ,

M3 :=
cξ
h20

(b∗)2

m2
0

.

Choosing a sufficiently small ξ withM1 > 0 and then applying Gronwall’s inequality
gives the following inequality holds

∥uk(τ)∥2 ≤ c(T̂ , h0, Ce)
(
∥uk(0)∥2 +M3T̂

)
,(44)

for all 0 ≤ τ ≤ T̂ . Since ∥uk(0)∥2 ≤ ∥u0,k∥2, (44) yields
max

0≤τ≤T̂
∥uk(τ)∥2 ≤ c̃.(45)

Integrating (43) from 0 to T̂ and employ the inequality (45) to get∫ T̂

0

∥∥∥∥∂uk∂y
∥∥∥∥2 dτ ≤ c̃.

This concludes the proof of (26). �

Remark 4.2. The entries of the matrices M, K and A given in (33), (34) and
(35) are computed explicitly benefiting of the structure of the basis elements ϕj ∈ Vk,
usually piecewise polynomials of some preset degree defined in Ω; see [1] for the
explicit form of the matrix K and A when using as basis piecewise linear functions.

5. Main results

In this Section, we prove a priori and a posteriori error estimates between the
weak solution to (P ) and weak solution to a semi-discrete version of (P ). The
discretization in space is done via the finite element method [2].

Theorem 5.1. (A priori error estimate) Assume (A1)–(A5) hold. Additionally,
take u0 ∈ H2(0, 1). Let (u, h) and (uk, hk) be the corresponding weak solutions to
problem (P ) and (Pd) in the sense of Definition 4.1 and Definition 4.2, respectively.
Then there exists a constant c > 0 (not depending on k) such that

∥u− uk∥2L∞(ST̂ ,L2(0,1)))∩L2(ST̂ ,H1(0,1)) + ∥h− hk∥2H1(ST̂ ) ≤ ck2.(46)
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Proof. We consider the time interval ST̂ on which both continuous and discrete
solutions to (12)–(17) exist and are uniquely defined. Let e := u − uk and h − hk
be the pointwise errors of the approximation. By subtracting (22) from (18) and
choosing φ = vk ∈ Vk, we obtain the following identity:(
∂u

∂τ
, vk

)
−
(
∂uk
∂τ

, vk

)
+

1

h2

(
∂u

∂y
,
∂vk
∂y

)
− 1

h2k

(
∂uk
∂y

,
∂vk
∂y

)
−
(
h′

h

∫ 1

0

y
∂u

∂y
vkdy −

h′k
hk

∫ 1

0

y
∂uk
∂y

vkdy

)
+
h′

h
u(τ, 1)vk(1)−

h′k
hk
uk(τ, 1)vk(1)

− 1

h
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
vk(0) +

1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
vk(0) = 0,(47)

which holds for all vk ∈ Vk and for almost every τ ∈ ST̂ .
Arranging conveniently the terms in (47) yields(

∂e

∂τ
, vk

)
+

1

h2

(
∂e

∂y
,
∂vk
∂y

)
−
(

1

h2k
− 1

h2

)(
∂uk
∂y

,
∂vk
∂y

)
−
(
h′

h

∫ 1

0

y
∂e

∂y
vkdy +

(
h′

h
− h′k
hk

)∫ 1

0

y
∂uk
∂y

vkdy

)
+
h′

h
e(τ, 1)vk(1) +

(
h′

h
− h′k
hk

)
uk(τ, 1)vk(1)

−
(
Bi
b(τ)

m0

(
1

h
− 1

hk

)
vk(0)− Bi H

(
u(τ, 0)

h
− uk(τ, 0)

hk

)
vk(0)

)
= 0.(48)

In (48), we take as test function vk := wk − uk ∈ Vk and use the decomposition
vk = (wk − u) + e. Then (48) becomes(

∂e

∂τ
, e

)
+

(
∂e

∂τ
, wk − u

)
+

1

h2

(
∂e

∂y
,
∂e

∂y

)
+

1

h2

(
∂e

∂y
,
∂

∂y
(wk − u)

)
−
(

1

h2k
− 1

h2

)(
∂uk
∂y

,
∂

∂y
(wk − uk)

)
−
(
h′

h

∫ 1

0

y
∂e

∂y
(wk − uk)dy +

(
h′

h
− h′k
hk

)∫ 1

0

y
∂uk
∂y

(wk − uk)dy

)
+
h′

h
e(τ, 1)(wk(1)− uk(1)) +

(
h′

h
− h′k
hk

)
uk(τ, 1)(wk(1)− uk(1))

− Bi
b(τ)

m0

(
1

h
− 1

hk

)
(wk(0)− uk(0))

+ Bi H

(
u(τ, 0)

h
− uk(τ, 0)

hk

)
(wk(0)− uk(0)) = 0.

Therefore, we can write

1

2

d

dτ
∥e∥2 + 1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 ≤

∥∥∥∥ ∂e∂τ
∥∥∥∥ ∥u− wk∥+

1

h2

∥∥∥∥∂e∂y
∥∥∥∥ ∥∥∥∥ ∂∂y (u− wk)

∥∥∥∥
+ |h− hk|

h+ hk
h2h2k

∥∥∥∥∂uk∂y
∥∥∥∥ ∥∥∥∥ ∂∂y (wk − uk)

∥∥∥∥
+
h′

h

∥∥∥∥∂e∂y
∥∥∥∥ ∥wk − uk∥+

∣∣∣∣h′h − h′k
hk

∣∣∣∣ ∥∥∥∥∂uk∂y
∥∥∥∥ ∥∥∥∥ ∂∂y (wk − uk)

∥∥∥∥
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+
h′

h
|e(τ, 1)||(wk(1)− u(1)) + e(τ, 1)|

+

∣∣∣∣h′h − h′k
hk

∣∣∣∣ |uk(τ, 1)||(wk(1)− u(1)) + e(τ, 1)|

+Bi
b∗

m0

∣∣∣∣ 1h − 1

hk

∣∣∣∣ |wk(0)− uk(0)|

+Bi H

∣∣∣∣u(τ, 0)h
− uk(τ, 0)

hk

∣∣∣∣ |wk(0)− uk(0)|.(49)

To bound some terms on the right hand side in (49), we introduce the strictly
positive constant cℓ < ∞, ℓ ∈ {1, 2, · · · , 5}. The value for these constants is not
explicitly written, but can be calculated. Before proceeding further, we collect two
useful estimates in Remark 5.1.

Remark 5.1. There exist constants c2, c5 > 0 such that

(1)

∣∣∣∣h′h − h′k
hk

∣∣∣∣ ≤ c2(|h− hk|+ |h′ − h′k|)

(2)

(
u(0)

h
− uk(0)

hk

)
=

1

h
(e(0)) +

uk(0)

hk
(hk − h) ≤ c5(|e(0)|+ |h− hk|).

Making use of Remark 5.1, (49) becomes

1

2

d

dτ
∥e∥2 + 1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 ≤

∥∥∥∥ ∂e∂τ
∥∥∥∥ ∥u− wk∥+

1

h2

∥∥∥∥∂e∂y
∥∥∥∥ ∥∥∥∥ ∂∂y (u− wk)

∥∥∥∥
+ c1|h− hk|

∥∥∥∥∂uk∂y
∥∥∥∥(∥∥∥∥ ∂∂y (wk − u)

∥∥∥∥+ ∥∥∥∥∂e∂y
∥∥∥∥)

+
h′

h

∥∥∥∥∂e∂y
∥∥∥∥ (∥wk − u∥+ ∥e∥)

+ c2(|h− hk|+ |h′ − h′k|)
∥∥∥∥∂uk∂y

∥∥∥∥(∥∥∥∥ ∂∂y (wk − u)

∥∥∥∥+ ∥∥∥∥∂e∂y
∥∥∥∥)

+
h′

h
|e(1)|(|wk(1)− u(1)|+ |e(1)|)

+ c3(|h− hk|+ |h′ − h′k|)|uk(τ, 1)|(|wk(1)− u(1)|+ |e(1)|)

+ c4Bi
b∗

m0
|h− hk| (|wk(0)− u(0)|+ |e(0)|)

+ c5Bi H(|e(0)|+ |h− hk|)(|wk(0)− u(0)|+ |e(0)|) =
9∑

ℓ=1

Iℓ.

We set wk := Iku, where Iku is the Lagrange interpolation of u. By using Lemma
3.1, Young’s inequality (8) and interpolation inequality (9), we obtain the following
estimates:

I1 :=

∥∥∥∥ ∂e∂τ
∥∥∥∥ ∥u− wk∥ ≤

∥∥∥∥ ∂e∂τ
∥∥∥∥ γ1k2∥u∥H2(0,1) ≤

1

2

∥∥∥∥ ∂e∂τ
∥∥∥∥2 k2 + γ21k

2

2
∥u∥2H2(0,1),

I2 :=
1

h2

∥∥∥∥∂e∂y
∥∥∥∥∥∥∥∥ ∂∂y (u− wk)

∥∥∥∥ ≤ 1

h2

∥∥∥∥∂e∂y
∥∥∥∥ γ2k ∥u∥H2(0,1)

≤ ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξγ

2
2k

2 1

h2
∥u∥2H2(0,1),
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I3 := c1|h− hk|
∥∥∥∥∂uk∂y

∥∥∥∥(∥∥∥∥ ∂∂y (wk − u)

∥∥∥∥+ ∥∥∥∥∂e∂y
∥∥∥∥)

≤ c1|h− hk|
∥∥∥∥∂uk∂y

∥∥∥∥(γ2k ∥u∥H2(0,1) +

∥∥∥∥∂e∂y
∥∥∥∥)

≤ ρ|h− hk|2
∥∥∥∥∂uk∂y

∥∥∥∥2 + cρc
2
1γ

2
2k

2 ∥u∥2H2(0,1)

+ cρ̂c
2
1|h− hk|2

∥∥∥∥∂uk∂y
∥∥∥∥2h2 + ρ̂

1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 .

We observe that if u0 ∈ H1(0, 1), then it also holds that uk ∈ H1(ST̂ , Vk). Hence,

we can control terms like
∥∥∥∂uk

∂y

∥∥∥2 via

(50) max
0≤τ≤T̂

∥uk∥2H1(0,1) +

∫ T̂

0

∥uk∥2H2(0,1)dτ ≤ ĉ1.

Therefore, we get

I3 ≤ ρĉ1|h− hk|2 + cρc
2
1γ

2
2k

2 ∥u∥2H2(0,1) + cρ̂ĉ1c
2
1|h− hk|2h2 + ρ̂

1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 ,

I4 :=
h′

h

∥∥∥∥∂e∂y
∥∥∥∥ (∥wk − u∥+ ∥e∥)

≤ h′

h

∥∥∥∥∂e∂y
∥∥∥∥(γ1k2 ∥u∥H2(0,1) + ∥e∥

)
≤ ζ

1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cζ(h

′)2
(
γ1k

2 ∥u∥H2(0,1) + ∥e∥
)2

≤ ζ
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + 2cζ(h

′)2
(
γ21k

4 ∥u∥2H2(0,1) + ∥e∥2
)
,

I5 := c2(|h− hk|+ |h′ − h′k|)
∥∥∥∥∂uk∂y

∥∥∥∥(∥∥∥∥ ∂∂y (wk − u)

∥∥∥∥+ ∥∥∥∥∂e∂y
∥∥∥∥)

≤ c2(|h− hk|+ |h′ − h′k|)
∥∥∥∥∂uk∂y

∥∥∥∥(γ2k ∥u∥H2(0,1) +

∥∥∥∥∂e∂y
∥∥∥∥)

≤ ξ

(
|h− hk|2

∥∥∥∥∂uk∂y
∥∥∥∥2 + |h′ − h′k|2

∥∥∥∥∂uk∂y
∥∥∥∥2
)

+ cξc
2
2γ

2
2k

2 ∥u∥2H2(0,1)

+ ξ̂
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξ̂c

2
2h

2

(
|h− hk|2

∥∥∥∥∂uk∂y
∥∥∥∥2 + |h′ − h′k|2

∥∥∥∥∂uk∂y
∥∥∥∥2
)
,

≤ ξĉ1
(
|h− hk|2 + |h′ − h′k|2

)
+ cξc

2
2γ

2
2k

2 ∥u∥2H2(0,1)

+ ξ̂
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξ̂ ĉ1c

2
2h

2
(
|h− hk|2 + |h′ − h′k|2

)
,

I6 :=
h′

h
|e(1)|(|wk(1)− u(1)|+ |e(1)|)

=
h′

h
|e(1)|2 + h′

h
|e(1)||wk(1)− u(1)|

=
h′

h
|e(1)|2 + h′

h

(
|e(1)|2

2
+

|wk(1)− u(1)|2

2

)
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=
3

2

h′

h
|e(1)|2 + h′

h

|wk(1)− u(1)|2

2

≤ 3

2

h′

h
ĉ ∥e∥2θ ∥e∥2(1−θ)

H1(0,1) +
h′

2h

(
γ1k

2 + γ3k
1+θ
)2 ∥u∥2H2(0,1)

≤ 3

2

(
ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + (

ξ

h2
+ cξ ĉ

2(h′)2) ∥e∥2
)

+
h′

2h
ĉ2
(
γ1k

2 + γ3k
1+θ
)2 ∥u∥2H2(0,1) ,

I7 := c3(|h− hk|+ |h′ − h′k|)|uk(τ, 1)|(|wk(1)− u(1)|+ |e(1)|)

≤ c3(|h− hk|+ |h′ − h′k|)ĉ ∥uk∥
1−θ

∥∥∥∥∂uk∂y
∥∥∥∥θ (|wk(1)− u(1)|+ |e(1)|)

≤ c3(|h− hk|+ |h′ − h′k|)ĉ2 ∥uk∥H1(0,1)

(
γ1k

2 + γ3k
1+θ
)
∥u∥H2(0,1)

+c3(|h− hk|+ |h′ − h′k|)ĉ2 ∥uk∥H1(0,1) ∥e∥
θ ∥e∥1−θ

H1(0,1)

≤ c3ĉ
2(|h− hk|+ |h′ − h′k|) ∥uk∥H1(0,1)

(
γ1k

2 + γ3k
1+θ
)
∥u∥H2(0,1)

+c3ĉ
2(|h− hk|+ |h′ − h′k|) ∥uk∥H1(0,1) ∥e∥

θ ∥e∥1−θ
H1(0,1)

≤ ξ (|h− hk|+ |h′ − h′k|)
2 ∥uk∥2H1(0,1) + cξ

(
c3ĉ

2(γ1k
2 + γ3k

1+θ)
)2 ∥u∥2H2(0,1)

+ξ̄ (|h− hk|+ |h′ − h′k|)
2 ∥uk∥2H1(0,1) + cξ̄c

2
3ĉ

4∥e∥2θ ∥e∥2(1−θ)
H1(0,1)

≤ 2ξĉ1
(
|h− hk|2 + |h′ − h′k|2

)
+ cξ

(
c3ĉ

2(γ1k
2 + γ3k

1+θ)
)2 ∥u∥2H2(0,1)

+2ξ̄ĉ1
(
|h− hk|2 + |h′ − h′k|2

)
+ ξ̂

1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 +

(
ξ̂

h2
+ cξ̂c

2
ξ̄c

4
3ĉ

8h2

)
∥e∥2,

I8 := c4Bi
b∗

m0
|h− hk| (|wk(0)− u(0)|+ |e(0)|)

≤ c4Bi
b∗

m0
|h− hk|

(
ĉ(γ1k

2 + γ3k
1+θ) ∥u∥H2(0,1) + ĉ ∥e∥θ ∥e∥1−θ

H1(0,1)

)
≤ ξ|h− hk|2 + cξc

2
4ĉ

2Bi2
(b∗)2

m2
0

(γ1k
2 + γ3k

1+θ)2∥u∥2H2(0,1)

+ξ̂|h− hk|2 + cξ̂c
2
4ĉ

2Bi2
(b∗)2

m2
0

∥e∥2θ ∥e∥2(1−θ)
H1(0,1)

≤ ξ|h− hk|2 + cξc
2
4ĉ

2Bi2
(b∗)2

m2
0

(γ1k
2 + γ3k

1+θ)2∥u∥2H2(0,1)

+ξ̂|h− hk|2 + ξ̄
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + ( ξ̄

h2
+ cξ̄c

2
ξ̂
c44ĉ

4Bi4
(b∗)4

m4
0

h2
)
∥e∥2 .

By a similar calculation used to obtain the upper bounds on I6 and I8, we get

I9 := c5Bi H(|e(0)|+ |h− hk|)(|wk(0)− u(0)|+ |e(0)|)

≤ 3

2

(
ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + ( ξ

h2
+ cξ ĉ

2c25Bi
2H2h2

)
∥e∥2

)
+ cξc

2
5Bi

2H2ĉ2(γ1k
2 + γ3k

1+θ)2 ∥u∥2H2(0,1)

+ (ξ + ξ̂)|h− hk|2 + ξ̄
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + ( ξ̄

h2
+ cξ̄c

2
ξ̂
c45ĉ

4Bi4H4h2
)
∥e∥2 .
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Finally, we are led to the following structural inequality:

1

2

d

dτ
∥e∥2 +A1

∥∥∥∥∂e∂y
∥∥∥∥2 ≤ A2k

2 +A3 ∥e∥2 +A4|h− hk|2 +A5|h′ − h′k|2,(51)

where

A1 :=
1

L2

(
1− 5

2
ξ − ρ̂− ζ − 2ξ̂ − 2ξ̄

)
,

A2 := ∥u∥H2(0,1)

(
γ21
2

+
1

h20
cξγ

2
2 + cρc

2
1γ

2
2 + 2cζ∥h′∥2∞γ21 + cξc

2
2γ

2
2

+
∥h′∥∞
2h0

ĉ2(γ1 + γ3)
2 + cξc

2
3ĉ

4(γ1 + γ3)
2 + cξc

2
4ĉ

2Bi2
(b∗)2

m2
0

(γ1 + γ3)
2

+cξc
2
5ĉ

2Bi2 H2(γ1 + γ3)
2
)
,

A3 := 2cζ∥h′∥2∞ +
1

h20

(
3ξ + ξ̂ + 2ξ̄

)
+

3

2
cξ ĉ

2∥h′∥2∞ + cξ̂c
2
ξ̄c

4
3ĉ

8∥h∥2∞

+ cξ̄c
2
ξ̂
ĉ4Bi4

(
c44

(b∗)4

m4
0

+ c45H
4

)
∥h∥2∞ + cξ ĉ

2c25Bi
2 H2∥h∥2∞,

A4 := 2(ξ + ξ̂) + ĉ1(ρ+ ξ) + 2ĉ1(ξ̄ + ξ) + cρ̂ĉ1c
2
1∥h∥2∞ + c22ĉ1cξ̂∥h∥

2
∞,

A5 := 3ξĉ1 + 2ξ̄ĉ1 + c22ĉ1cξ̂∥h∥
2
∞.

From (19) and (23), we get for all τ ∈ (0, T̂ ) the inequality

|h′(τ)− h′k(τ)| ≤ A0|e(1)|+
1

m0
|σ(h(τ))− σ(hk(τ))|

≤ A0ĉ
(
η ∥e(τ)∥H1(0,1) + cη∥e(τ)∥

)
+

L
m0

|h(τ)− hk(τ)|.

Thus, this leads to

|h′ − h′k|2 ≤ 3

(
A2

0ĉ
2η2

∥∥∥∥∂e∂y
∥∥∥∥2 +A2

0ĉ
2(η2 + c2η)∥e∥2 +

L2

m2
0

|h− hk|2
)
.(52)

Using (52) in (51), we infer that

d

dτ
∥e∥2 + (A1 − 3A2

0ĉ
2η2A5)

∥∥∥∥∂e∂y
∥∥∥∥2 ≤ A2k

2 +A6 ∥e∥2 +
(
A4 + 3A5

L2

m2
0

)
|h− hk|2,

(53)

where A6 := A3 + 3A2
0ĉ

2(η2 + c2η)A5. We choose ξ > 0, ρ̂ > 0, ξ̄ > 0, ζ > 0,

ξ̂ > 0, and η > 0 sufficiently small such that ζ1 := A1 − 3A2
0ĉ

2η2A5 > 0. Applying
Gronwall’s inequality (see e.g. Appendix B in [7]) gives the following upper bounds:

∥e(τ)∥2 ≤ e
∫ τ
0

A6ds

(
∥e(0)∥2 +

∫ τ

0

(
A2k

2 +

(
A4 + 3A5

L2

m2
0

)
|h(s)− hk(s)|2

)
ds

)
≤ c6(A0, A3, A5, T̂ )

(
k4∥u0∥2H2(0,1) +A2k

2τ

+

(
A4 + 3A5

L2

m2
0

)∫ τ

0

|h(s)− hk(s)|2ds
)

≤ c6(A0, A3, A4, A5,L, T̂ )
(
k4 + k2T̂ + ∥h− hk∥2L2(ST̂ )

)
.
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Thus, we obtain

max
0≤τ≤T̂

∥e(τ)∥2 ≤ c6

(
k2 + ∥h− hk∥2L2(ST̂ )

)
.

By using Young’s inequality together with (52), we get the following relations:

d

dτ
(|h− hk|2) = 2(h− hk)(h

′ − h′k)

≤ |h− hk|2 + |h′ − h′k|2

≤ C|h− hk|2 + 3A2
0ĉ

2η2
∥∥∥∥∂e∂y

∥∥∥∥2 + 3A2
0ĉ

2(η2 + c2η)∥e∥2,(54)

where C := 1 + 3L2/m2
0.

Let δ > 0 be any positive real number. Adding δ d
dτ |h− hk|2 on both sides of (53)

and using (54) yields

d

dτ

(
∥e∥2 + δ|h− hk|2

)
+(ζ1 − 3δĉ2A2

0η
2)

∥∥∥∥∂e∂y
∥∥∥∥2

≤ A2k
2 + (A6 + 3δA2

0ĉ
2(η2 + c2η))∥e∥2

+

(
A4 + 3A5

L2

m2
0

+ δC

)
|h− hk|2.

We choose η > 0 in such a way that (ζ1 − 3δĉ2A2
0η

2) > 0. Then it exists a constant
A7 > 0 such that

d

dτ

(
∥e∥2 + δ|h− hk|2

)
≤ A2k

2 +A7(∥e∥2 + δ|h− hk|2).(55)

Gronwall’s inequality applied to (55) for the quantity ∥e∥2 + δ|h − hk|2 gives the
estimate

∥e∥2 + δ|h− hk|2 ≤ ck2.(56)

Integrating (53) from 0 to T̂ and using (56) yields∫ T̂

0

∥∥∥∥∂e∂y
∥∥∥∥2 dτ ≤ c7k

2.(57)

Integrating (52) from 0 to T̂ and using (56) and (57) gives the estimate

∥h′ − h′k∥2 ≤ ck2,

which completes the proof of Theorem 5.1. �

Theorem 5.2. (A posteriori error estimate) Assume (A1)–(A5) hold. Additional-
ly, take u0 ∈ H2(0, 1). Let (u, h) and (uk, hk) be the corresponding weak solutions to
the problem (P ) and (Pd) in the sense of Definition 4.1 and Definition 4.2, respec-

tively. Then there exist 0 < T̃ ≤ T̂ and positive constants c1, c2, c3 (independent

of k and u) such that for all τ ∈ ST̃ := (0, T̃ ) the following inequality holds:

∥u− uk∥L2(0,1) + c1|h− hk|2 + c2

∫ τ

0

∥∥∥∥ ∂∂x (u− uk)

∥∥∥∥2 ds
≤ c3

(
|h(0)− hk(0)|2 +

N−2∑
i=0

k2i

{
∥R(uk)∥2L2(ST̃ ,L2(Ii))

+ k2i ∥u0∥2H2(Ii)

})
,(58)
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where the residual R(uk) is defined by

R(uk) :=
h′k
hk
y
∂uk
∂y

+
1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
− h′k
hk
uk(τ, 1)−

∂uk
∂τ

.(59)

Proof. Let e := u−uk be the pointwise error. Using the weak formulation (18), we
can write(

∂e

∂τ
, v

)
+

1

h2

(
∂e

∂y
,
∂v

∂y

)
=

[(
∂u

∂τ
, v

)
+

1

h2

(
∂u

∂y
,
∂v

∂y

)]
−
[(

∂uk
∂τ

, v

)
+

1

h2

(
∂uk
∂y

,
∂v

∂y

)]
=
h′

h

∫ 1

0

y
∂u

∂y
vdy +

1

h
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
v(0)

− h′

h
u(τ, 1)v(1)−

[(
∂uk
∂τ

, v

)
+

1

h2k

(
∂uk
∂y

,
∂v

∂y

)
+

(
1

h2
− 1

h2k

)(
∂uk
∂y

,
∂v

∂y

)]
(60)

for all v ∈ H1(0, 1). Inserting (59) into (60) yields(
∂e

∂τ
, v

)
+

1

h2

(
∂e

∂y
,
∂v

∂y

)
=
h′

h

∫ 1

0

y
∂u

∂y
vdy +

1

h
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
v(0)

− h′

h
u(τ, 1)v(1)−

(
1

h2
− 1

h2k

)(
∂uk
∂y

,
∂v

∂y

)
− h′k
hk

∫ 1

0

y
∂uk
∂y

vdy − 1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
v(0)

+
h′k
hk
uk(τ, 1)v(1) +

[∫ 1

0

R(uk)vdy −
1

h2k

(
∂uk
∂y

,
∂v

∂y

)]
,(61)

where R(uk) is the residual quantity defined in (59). Since uk ∈ Vk, we have that
∂2uk
∂y2

= 0 on each Ii := (yi, yi+1). The term∫ 1

0

R(uk)vdy −
1

h2k

(
∂uk
∂y

,
∂v

∂y

)
becomes after integration by part

N−2∑
i=0

{∫ yi+1

yi

R(uk)vdy −
1

h2k

(
∂uk
∂y

(yi+1)v(yi+1)−
∂uk
∂y

(yi)v(yi)

)}
.

We also get from (22)

N−2∑
i=0

{∫ yi+1

yi

R(uk)vkdy −
1

h2k

(
∂uk
∂y

(yi+1)vk(yi+1)−
∂uk
∂y

(yi)vk(yi)

)}
= 0(62)

for all vk ∈ Vk. Adding (62) to (61) while taking v = e ∈ H1(0, 1) and vk = Ike ∈ Vk
gives

1

2

d

dτ
∥e∥2 + 1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 =

h′

h

∫ 1

0

y
∂u

∂y
edy +

1

h
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
e(0)
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− h′

h
u(τ, 1)e(1)−

(
1

h2
− 1

h2k

)(
∂uk
∂y

,
∂e

∂y

)
− h′k
hk

∫ 1

0

y
∂uk
∂y

edy

− 1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
e(0) +

h′k
hk
uk(τ, 1)e(1)

+
N−2∑
i=0

{∫ yi+1

yi

R(uk)(e− Ike)dy

− 1

h2k

(
∂uk
∂y

(yi+1)(e− Ike)(yi+1)−
∂uk
∂y

(yi)(e− Ike)(yi)

)}

=

5∑
i=1

Ii,

where

I1 :=
h′

h

∫ 1

0

y
∂u

∂y
edy − h′k

hk

∫ 1

0

y
∂uk
∂y

edy,

I2 :=
1

h
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
e(0)− 1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
e(0),

I3 :=
h′k
hk
uk(τ, 1)e(1)−

h′

h
u(τ, 1)e(1),

I4 := −
(

1

h2
− 1

h2k

)(
∂uk
∂y

,
∂e

∂y

)
,

I5 :=

N−2∑
i=0

{∫ yi+1

yi

R(uk)(e− Ike)dy

− 1

h2k

(
∂uk
∂y

(yi+1)(e− Ike)(yi+1)−
∂uk
∂y

(yi)(e− Ike)(yi)

)}
.

By using (26) together with Cauchy-Schwarz and Young’s inequality, we obtain

|I1| ≤
h′

h

∥∥∥∥∂e∂y
∥∥∥∥ ∥e∥+ ∣∣∣∣h′h − h′k

hk

∣∣∣∣ ∥e∥
≤

(
ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξ∥h′∥2∞ ∥e∥2

)
+ ξ∥e∥2 + 2cξ

(
|h− hk|2 + |h′ − h′k|2

)
.(63)

|I2| ≤ Bi
b(τ)

m0

1

hhk
|h− hk||e(0)|+Bi H

∣∣∣∣u(τ, 0)h
− uk(τ, 0)

hk

∣∣∣∣ |e(0)|
≤
(
Bi

b∗

m0

1

L2
ĉ+Bi Hĉ

)
|h− hk|∥e∥1−θ

∥∥∥∥∂e∂y
∥∥∥∥θ + c2Bi Hĉ∥e∥2(1−θ)

∥∥∥∥∂e∂y
∥∥∥∥2θ

≤ ξ̄|h− hk|2 + ξcξ̄
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + c̃4cξcξ̄h

2∥e∥2 + ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + c̃21cξh

2∥e∥2,(64)

where

θ =
1

2
, c̃ :=

(
Bi

b∗

m0

1

L2
ĉ+Bi Hĉ

)
and c̃1 := c2Bi Hĉ.

|I3| ≤
∣∣∣∣h′h − h′k

hk

∣∣∣∣ |e(1)|+ h′k
hk

|e(1)|2
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≤ 2ξ̄
(
|h− hk|2 + |h′ − h′k|2

)
+ ξ

1

h2

∥∥∥∥∂e∂y
∥∥∥∥2

+ cξ̄cξc
4
3ĉ

4∥e∥2h2 + c

(
ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξ∥e∥2

)
.(65)

|I4| ≤ |h− hk|
h+ hk
h2h2k

∥∥∥∥∂uk∂y
∥∥∥∥∥∥∥∥∂e∂y

∥∥∥∥
≤ ξ|h− hk|2 + cξc

2(h0, L)
1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 .(66)

To bound |I5| from above, we use the fact that Ike is the Lagrange interpolant of
e with the property (e− Ike)(yi) = 0, i ∈ {0, 1, 2, · · · , N − 1}. We have

|I5| ≤
N−2∑
i=0

∫ yi+1

yi

R(uk)(e− Ike)dy

≤
N−2∑
i=0

∥R(uk)∥L2(Ii)∥e− Ike∥L2(Ii)

≤ c̃
N−2∑
i=0

∥R(uk)∥L2(Ii)ki

∥∥∥∥∂e∂y
∥∥∥∥
L2(Ii)

≤ c̃

(
N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i

) 1
2
(

N−2∑
i=0

∥∥∥∥∂e∂y
∥∥∥∥2
L2(Ii)

) 1
2

= c̃

(
N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i

) 1
2 ∥∥∥∥∂e∂y

∥∥∥∥
L2(0,1)

.

By using Young’s inequality, we obtain

|I5| ≤
ξ

h2

∥∥∥∥∂e∂y
∥∥∥∥2 + cξ c̃

2h2
N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i .(67)

It follows from (63)–(67) that for all ξ, ξ̄ > 0, there exist positive constants
K1, K2, K3 and K4 such that

1

2

d

dτ
∥e∥2 + 1

h2

∥∥∥∥∂e∂y
∥∥∥∥2 ≤ K1∥e∥2 +K2|h− hk|2

+
1

h2
K3

∥∥∥∥∂e∂y
∥∥∥∥2 +K4

N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i .

Let δ > 0 be a fixed, sufficiently small. Adding δ
2

d
dτ |h − hk|2 on both sides and

using (54) yields

1

2

d

dτ

(
∥e∥2 + δ|h− hk|2

)
+

1

L2
(1−K3 − 3δA2

0η)

∥∥∥∥∂e∂y
∥∥∥∥2

≤K1∥e∥2 +K2|h− hk|2 + 3δA2
0cη∥e∥2 + Cδ∥h− hk∥2 +K4

N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i .

We choose ξ > 0, ξ̄ > 0 and η > 0 in such a way that 1 −K3 − 3δA2
0η ≥ 0. Then

it exists K5 > 0 such that
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1

2

d

dτ

(
∥e∥2 + δ|h− hk|2

)
+

1

L2
(1−K3 − 3δA2

0η)

∥∥∥∥∂e∂y
∥∥∥∥2

≤K5(∥e∥2 + δ|h− hk|2) +K4

N−2∑
i=0

∥R(uk)∥2L2(Ii)
k2i .(68)

Applying Gronwall’s inequality to (68) for the quantity ∥e∥2+ δ|h−hk|2 and using
the initial condition

∥e(0)∥2L2(0,1) =
N−2∑
i=0

∥e(0)∥2L2(Ii)
≤ k4i ∥u0∥2H2(Ii)

,

it exists a constant c(T̃ , L) such that

∥e∥2 + δ|h(τ)− hk(τ)|2 ≤ c(T̃ , L)
(
|h(0)− hk(0)|2 + k4i ∥u0∥2H2(Ii)

+

N−2∑
i=0

∫ τ

0

∥R(uk)∥2L2(Ii)
k2i ds

)
.(69)

By integrating (68) on (0, τ) and by using (69), it exists another constant c(T̃ , L) >
0 such that the following inequality holds:∫ τ

0

∥∥∥∥ ∂∂x (u− uk)

∥∥∥∥2 ds ≤ c(T̃ , L)
(
|h(0)− hk(0)|2 + k4i ∥u0∥2H2(Ii)

+
N−2∑
i=0

∫ τ

0

∥R(uk)∥2L2(Ii)
k2i ds

)
.

This concludes the proof of Theorem 5.2. �

6. Numerical illustrations

In this section, we firstly present our simulation results for both the dense and
foam rubber. The difference in the two cases is incorporated in the choice of pa-
rameters. To approximate numerically the weak solution to (22)–(25), we use the
method of lines; for more details see, for instance, [2]. Firstly, the model equation-
s are discretized in space by means of the finite element method. The resulting
time-dependent system of ordinary differential equations is tackled via the solver
odeint in Python; see [20] for details on Python and [12] for details on the solver.
We refer the reader to see our previous work [1] for the laboratory experiments, nu-
merical method and simulation results where we investigated the parameter space
by exploring eventual effects of the choice of parameters on the overall diffusants
penetration process.
We take as observation time Tf = 40 minutes for the final time with time step
∆t = 1/1000 minutes. We choose the number of space discretization points N
to be 100. The values of parameters are taken to be s0 = 0.01 (mm), m0 = 0.1
(gram/mm3) and b = 1 (gram/mm3). We take the value 3.66 × 10−4 (mm2/min)
for the diffusion constant D [14], 0.564 (mm/min) for absorption rate β [15] and
2.5 for Henry’s constant H [13]. For the dense rubber, we choose σ(s(t)) = s(t)/10
(gram/mm3) and a0 = 500 (mm4/sec/gram) while we choose σ(s(t)) = s(t)/50
(gram/mm3) and a0 = 2000 (mm4/sec/gram) for the foam rubber case.
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Figure 2. Dense rubber case. Left: Concentration profile of dif-
fusant. Right: Position of the moving boundary.

Figure 3. Foam rubber case. Left: Concentration profile of dif-
fusants. Right: Position of the moving boundary.

In Figure 2 and Figure 3 we show the concentration profile of the penetrating
diffusant, and respectively, the position of the moving boundary for the dense rubber
and foam rubber respectively. Comparing the diffusant concentration profile in
Figure 2 and Figure 3, we notice in both cases that, within a short time of release
of diffusant from its initial position, the diffusant quickly enters the rubber from
the left boundary and then starts diffusing inside displacing a penetration front. In
bothe Figure 2 and Figure 3, we compare simulation results against experimental
data for the position of moving boundary. Both plots show a good agreement
between model and experiment.

Finally, we wish to point out that the order of convergence of our FEM scheme
is consistent with the estimates stated in (46). As we are not aware of an exact
solution to (22)–(25), we compute the finite element approximation of our weak
solution on a fine mesh (say, with 640 nodes) and denote it by uk̃. We use this
uk̃ as the reference solution for computing the errors and convergence orders. We

make use of the discrete ℓ2(Q(T̂ )) norm which we denote here as e(ki) :=

∥∥uk̃(τ, y)− uki(τ, y)
∥∥
L2(ST̂ ,L2(0,1))

=

∆τki

Nt∑
j=0

N−1∑
ℓ=0

|uk̃(τj , yℓ)− uki(τj , yℓ)|2
 1

2

.

Here ∆τ is the uniform size of the Nt + 1 time steps, while {k1, k2, k3, · · · } with
ki > ki+1 for i ∈ {1, 2, · · · } is a finite collection of the different mesh sizes used in
the computations.

We determine the convergence order based on any two consecutive calculations
of discrete errors using two different mesh sizes. To this end, we perform the
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computations on a sequence of grids with mesh size k that are halved in each step.
Thus, we use the following formula to compute the convergence order r:

r := log2

(
e(ki)

e(ki+1)

)
.

Figure 4. Convergence order when time step size ∆t = 10−4 is
fixed. Dash lines are lines of slope 1. Left: Log log scale plot of
error on the boundary ∥h−hk∥L2(ST̂ ) (circles) and ∥h′−h′k∥L2(ST̂ )

(diamonds). Right: Log log scale plot of error on the concentration
∥u − uk∥L2(ST̂ ,L2(0,1)) (triangles) and ∥u − uk∥L2(ST̂ ,H1(0,1))

(squares).

We show in Figure 4 the computed convergence order for the approximation
of the moving boundary position and of the concentration profile. This is done
in various norms for N = 20, 40, 80, 160, and 320. These numerical results are in
agreement with the convergence order proven in Section 5.

7. Conclusion

The goal of this work was to analyze the errors produced by a semi-discrete finite
element approximation of the weak solution of moving boundary problem modeling
the penetration of diffusants into rubber. We obtained the a priori error estimate
(46) for the diffusant concentration profile as well as for the position and speed of
the moving boundary. The convergence rate is of order of O(1) – the deviation
from optimality is due to the nonlinear coupling produced by the presence of the
unknown moving boundary. Additionally, we obtained the a posteriori error (58).
Finally, we illustrated numerically the basic output of our model. It turns out that
results are in the expected experimental range and they can be obtained in practice
using convergence rates closed to the theoretical ones.
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[21] M. A. Piqueras and R. Company, and L. Jódar. Solving two-phase freezing Stefan problems:

Stability and monotonicity. Mathematical Methods in the Applied Sciences, 43(14):7948–
7960, 2020.

[22] E. Javierre, C. Vuik, F. J. Vermolen and S. van der Zwaag. A comparison of numerical models
for one-dimensional Stefan problems. Journal of Computational and Applied Mathematics,
192(2):445-459, 2006.

[23] J. A. Mackenzie and M. L. Robertson. The numerical solution of one-dimensional phase

change problems using an adaptive moving mesh method. Journal of Computational Physics,
161(2):537–557, 2000.

[24] C. Chainais-Hillairet, B. Merlet, and A. Zurek. Convergence of a finite volume scheme for a
parabolic system with a free boundary modeling concrete carbonation. ESAIM: Mathematical

Modelling and Numerical Analysis, 52(2):457–480, 2018.



ERROR ANALYSIS OF FE APPROXIMATIONS TO A MOVING BOUNDARY PROBLEM125
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[29] M. A. Piqueras, R. Company, and L. Jódar. Numerical analysis and computing of free bound-
ary problems for concrete carbonation chemical corrosion. Journal of Computational and
Applied Mathematics, 336:297–316, 2018.

[30] J. A. Nitsche. Finite element approximations to the one dimensional Stefan problem. Recent

Advances in Numerical Analysis, 119–142, 1978.
[31] T. Aiki and A. Muntean. A free-boundary problem for concrete carbonation: Front nucle-

ation and rigorous justification of the
√
t-law of propagation. Interfaces and Free Boundaries,

15:167–180, 2013.
[32] J. G. Heywood and R. Rannacher. Finite element approximation of the nonstationary Navier–

Stokes problem. I. Regularity of solutions and second-order error estimates for spatial dis-
cretization. SIAM Journal on Numerical Analysis, 19(2):275–311, 1982.
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