- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose and analyze a decoupled second order backward difference formula (BDF2) time-stepping algorithm for solving transient viscoelastic fluid flow. The spatial discretization is based on continuous Galerkin finite element approximation for the velocity and pressure, and discontinuous Galerkin finite element approximation for the viscoelastic stress tensor. To obtain a non-iterative decoupled algorithm from the fully discrete nonlinear system, we employ a second order extrapolation in time to the nonlinear terms. The algorithm requires the solution of one Navier-Stokes problem and one constitutive equation per time step. For mesh size $h$ and temporal step size ∆$t$ sufficiently small satisfying ∆$t$ ≤ $Ch$$d$/4, a priori error estimates in terms of ∆$t$ and $h$ are derived. Numerical tests are presented that illustrate the accuracy and stability of the algorithm.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13642.html} }In this paper, we propose and analyze a decoupled second order backward difference formula (BDF2) time-stepping algorithm for solving transient viscoelastic fluid flow. The spatial discretization is based on continuous Galerkin finite element approximation for the velocity and pressure, and discontinuous Galerkin finite element approximation for the viscoelastic stress tensor. To obtain a non-iterative decoupled algorithm from the fully discrete nonlinear system, we employ a second order extrapolation in time to the nonlinear terms. The algorithm requires the solution of one Navier-Stokes problem and one constitutive equation per time step. For mesh size $h$ and temporal step size ∆$t$ sufficiently small satisfying ∆$t$ ≤ $Ch$$d$/4, a priori error estimates in terms of ∆$t$ and $h$ are derived. Numerical tests are presented that illustrate the accuracy and stability of the algorithm.