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ANALYSIS OF A SECOND-ORDER DECOUPLED

TIME-STEPPING SCHEME FOR TRANSIENT

VISCOELASTIC FLOW

S. S. RAVINDRAN

Abstract. In this paper, we propose and analyze a decoupled second order backward
difference formula (BDF2) time-stepping algorithm for solving transient viscoelastic fluid
flow. The spatial discretization is based on continuous Galerkin finite element approxima-
tion for the velocity and pressure, and discontinuous Galerkin finite element approximation
for the viscoelastic stress tensor. To obtain a non-iterative decoupled algorithm from the
fully discrete nonlinear system, we employ a second order extrapolation in time to the
nonlinear terms. The algorithm requires the solution of one Navier-Stokes problem and
one constitutive equation per time step. For mesh size h and temporal step size ∆t suf-
ficiently small satisfying ∆t ≤ Ch

d/4, a priori error estimates in terms of ∆t and h are
derived. Numerical tests are presented that illustrates the accuracy and stability of the
algorithm.

Key words. Viscoelasticity, finite element method, discontinuous Galerkin method, de-
coupled scheme, error estimates, BDF2.

1. Introduction

Time accurate computation of viscoelastic flows are important in many
engineering applications involving non-Newtonian fluid mechanics, see [13,
17, 21]. The Oldroyd-B model is one of the simplest constitutive models ca-
pable of describing the viscoelastic behavior of flows in which the extra stress
tensor is defined by a hyperbolic partial differential equation. The challenges
posed by the hyperbolic character of the equation for the extra stress tensor
such as spurious oscillations warrants care in discretizing this equation. For
the steady state problem, a discontinuous Galerkin (DG) finite element ap-
proximation of the constitutive equation was proposed and analyzed in [2].
In [16], a decoupled algorithm was analyzed for efficient implementation of
the scheme discussed in [2]. In [20], a Streamline Upwind Petrov Galerkin
(SUPG) approximation was employed to discretize the constitutive equation
and an error analysis was presented. For the unsteady problem, a DG dis-
cretization based approximation for the constitutive equation in inertialess
flow was studied in [3]. In [5], a fractional step θ method for time inte-
gration, combined with Taylor-Hood finite element and the SUPG spatial
discretization is presented. An implicit backward Euler time discretization
and continuous piecewise linear finite element in space for three field S-
tokes problem is discussed in [1]. In [22], unconditional error estimates of
finite element approximation to the viscoelastic flows, with DG discretiza-
tion for the constitutive equation is discussed. With first order implicit Euler
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temporal discretization and Taylor-Hood finite element approximation for
the velocity and pressure, they derived error estimates under the assump-
tion ∆t ≤ Ch3/2. In [9], a first order implicit Euler time discretization and
SUPG discretization for the constitutive equation was discussed and error
estimates were derived under the assumption that ∆t, ν < C hd/2, where
ν is the stabilization parameter of SUPG method. In [8], a Crank-Nicolson
time discretization scheme with a DG approximation for the constitutive
equation presented and error estimates were derived under the assumption
that ∆t ≤ Chd/4 .

In this paper, we propose and analyze a partitioned time stepping scheme
for the viscoelastic flow model based on second order backward Euler time
discretization. A second order in time extrapolation is used to effect a de-
coupling of the subphysics problems and to have the approximation deter-
mined at each time level by the solution of a single linear system. With
finite element approximation of the momentum equation and DG method
for the constitutive equation, we derive error estimates under the assumption
∆t ≤ Chd/4.

The rest of the paper is organized as follows: In Section 2, we intro-
duce the decoupled second-order backward difference time stepping scheme
assuming mixed finite element spatial discretizations for the time depen-
dent viscoelastic flow with constitutive equation stabilized by discontinuous
Galerkin (DG) approximation. In §3, we present the error estimates for the
fully discrete approximations. In §4, we present numerical results that illus-
trate the accuracy and efficiency of our algorithm. We close by providing
some remarks in §5.

2. The Oldroyd B model and decoupled time-stepping scheme

2.1. The Oldroyd B model. We consider a fluid flow in a bounded do-
main Ω in R

d, (d = 2, 3) with Lipschitzian boundary Γ. Let p denotes the
pressure, u the velocity, D(u) := 1

2(∇u+∇ut) the rate of strain tensor and
σtot the total stress tensor. An Oldroyd’s model of differential type with a
single relaxation time is obtained by setting σtot = −pI + σ + σN where σ
is the viscoelastic part of the extra stress tensor and σN = 2(1 − α)D(u) is
the Newtonian part, 1 < α ≤ 1. The Oldroyd-B model of viscoelastic flow
then is the following
(1)



∂tu− 2(1− α)

Re
∇ · D(u) + (u · ∇)u+

1

Re
∇p − ∇ · σ = f in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

∂tσ + (u · ∇)σ − 2α
λ D(u) + ga(σ,∇u) + σ

λ = 0 in Ω× (0, T ]

where the function f is the external force and the function ga is defined by

ga(σ,∇u) :=
1− a

2
(σ∇u+ (∇u)tσ)− 1 + a

2
((∇u)σ + σ(∇u)t) ,
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where a ∈ [−1, 1] . Moreover T (> 0) denotes time, Re the Reynolds number
and λ the Weissenberg number.

The solution of (1) is required to satisfy boundary conditions. For the
velocity, we set u = g on Γ. Due to the hyperbolic character of constitutive
equation for the stress σ for fixed u, we need to apply σ = σ̂ on the inflow
boundary Γ− = {x ∈ Γ : u · n < 0} . In order to simplify the analysis,
we assume that g = 0 which implies that there is no boundary condition
necessary for the stress σ. The initial conditions are prescribed as

u(x, 0) = u0(x) and σ(x, 0) = σ0(x) in Ω .

2.2. The weak form. In this section, we define the weak form of (1). The
following notation will be employed. For integer k ≥ 0, Ck(Ω) denotes the
space of functions k times continuously differentiable in Ω and the space
Ck(Ω) denotes the functions in Ck(Ω) bounded and uniformly continuous in
Ω with derivatives up to the kth-order, and the space Ck,1(Ω) consists of func-
tions in Ck(Ω) that are Lipschitz-continuous in Ω with derivatives up the kth-
order. For a Banach space X, we denote by Lp(0, T ;X) the time-space func-

tion space endowed with the norm ‖w‖Lp(0,T ;X) :=
(∫ T

0 ‖w‖pX dt
)1/p

if 1 ≤
p < ∞ and ess sup

t∈[0,T ]
‖w‖X if p = ∞ . We will often use the abbreviated

notation Lp(X) := Lp(0, T ;X) for convenience. The symbol C([0, T ];X)
denotes the set of continuous functions u : [0, T ] → X endowed with the
norm ‖u‖C(0,T ;X) := max

0≤t≤T
‖u(t)‖X . For any integer k ≥ 1, let W k,m(Ω)

be the Sobolev space of functions in Lp(Ω) with derivatives up-to the kth-

order endowed with the norm ‖φ‖k,m :=


∑

|α|≤k

∫

Ω
|∂αxφ(x)|mdx




1
m

where

∂αxφ(x) :=
∂|α|

∂
α1
x1

···∂αd
xd

φ(x) , α := (α1, · · · , αd), αi ≥ 0, |α| :=
d∑

i=1

αi . We de-

note by Hk(Ω) the space W k,2(Ω), when m = 2, and drop the subscripts
p(= 2) in referring to the norm in Hk(Ω). Moreover, we will use the following
simplified norm notations:

‖u‖ := ‖u‖L2(Ω) and ‖u‖∞ := ‖u‖L∞(Ω) .

We introduce the time discrete space lp(Z) associated with Lp(0, T ;Z); lp(Z)
is the space of Z-valued sequences w := {wn;n = 1, . . . , N} with norm
‖ · ‖lp(Z) defined by

‖w‖lp(Z) :=





(∆t

N∑

n=1

‖wn‖pZ)1/p if 1 ≤ p <∞

max
1≤n≤N

‖wn‖Z if p = ∞ .
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We will also use the following spaces

H1
0(Ω) :={u ∈ H1(Ω) : u|Γ = 0 } ,
S :={τ = (τij) | τij = τji , τij ∈ L2(Ω) , 1 ≤ i, j ≤ d }

∩ {τ = (τij) |u · ∇τ ∈ L2(Ω) , ∀u ∈ H1
0(Ω) } ,

L2
0(Ω) :={p ∈ L2(Ω) :

∫

Ω
p dΩ = 0 }

and
V := {v ∈ H1

0(Ω) : b(v, q) = 0 , ∀q ∈ L2
0(Ω)} .

For later purposes, we recall Korn’s inequality (see [14])

(D(v),D(v)) ≥ λk‖v‖21 ∀v ∈ H1(Ω) ,

the Poincaré inequality

‖v‖2 ≤ λp‖∇v‖2 ∀v ∈ H1
0(Ω) ,

the Gagliardo-Nirenberg interpolation inequality [7]

‖u‖Lq(Ω) ≤ C‖∇u‖λLp(Ω)‖u‖1−λ
Lr(Ω)

for 0 ≤ λ ≤ 1 and 1
q = λ(1p − 1

d) + (1− λ)1r and the Agmon’s inequality

‖u‖∞ ≤ C‖u‖
1
2
1 ‖u‖

1
2
2 ∀u ∈ H2(Ω) ∩H1

0(Ω) .

We define the following bilinear and trilinear forms given by

a(u,v) :=
2(1− α)

Re

∫

Ω
D(u) : D(u) dΩ ,

c(u,v,w) :=
1

2

∫

Ω
[(u · ∇)v ·w − (u · ∇)w · v]dΩ

=

∫

Ω
[(u · ∇)v ·w +

1

2
(∇ · u)v ·w] dΩ

= −
∫

Ω
[(u · ∇)w · v +

1

2
(∇ · u)v ·w] dΩ ,

for all u,v,w ∈ H1(Ω) with (u · n)v ·w = 0 on Γ, and

b(v, r) := −
∫

Ω
r∇ · v dΩ for (v, r) ∈ H1(Ω)× L2

0(Ω) .

A weak formulation of the problem (1) is derived by multiplying (1) by
test functions and integrating by parts.

Definition 2.1 For a given f ∈ L2(0, T ;H−1(Ω)) a triple (u, σ, p) ∈ L2(0, T ;
H1

0(Ω))×L2(0, T ;S)×L2(0, T ;L2
0(Ω)) with (∂tu, ∂tσ) ∈ L1(0, T ;H−1(Ω))×

L1(0, T ;S′) is said to be a weak solution of (1) if
(2)



(∂tu,v) + a(u,v) + c(u,u,v) + 1
Re(σ,D(v)) + b(v, p) = (f ,v)

b(u, q) = 0

(∂tσ, τ) + 1
λ(σ, τ) − 2α

λ (D(u), τ) + (u · ∇σ, τ) + (g(σ,∇u), τ) = 0
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for all v ∈ H1
0(Ω), q ∈ L2

0(Ω) and τ ∈ S . For existence and stability results
for the solutions of problem (1) and the corresponding creeping flow problem
(neglecting the inertial terms) the readers are referred to [11, 18].

2.3. The partitioned time-stepping scheme. In this section, we for-
mulate a partitioned time stepping scheme for viscoelastic flow model and
derive error estimates for the fully discrete scheme by assuming finite ele-
ment spatial discretization. We begin by describing the finite element spatial
discretization and summarizing approximation properties used in the sub-
sequent analysis.

We assume the domain Ω is a convex polyhedron, for simplicity, and
partition Ω into a mesh Th with Ω = ∪K∈ThK so that diameter(K) ≤ h
and any two closed elements K1 and K2 ∈ Th are either disjoint or share
exactly one face, side or vertex. Suppose further that Th is a shape regular
and quasi-uniform triangulation. To discretize the Oldroyd B model in space
by the finite element method, we select finite element spaces

velocity : Xh ⊂ H1
0(Ω), pressure : Qh ⊂ L2

0(Ω), stress : Sh ⊂ S ,

where

Xh :={v ∈ C(Ω) : v|K ∈ Pk(K) ,∀K ∈ Th} ,
Sh :={σ : σ|K ∈ Pq(K) ,∀K ∈ Th} ,
Qh :={p ∈ C(Ω) : p|K ∈ Pk−1(K) ,∀K ∈ Th} ,
Vh :={vh ∈ Xh : b(vh, rh) = 0 ∀rh ∈ Qh } ,

and Pk is the space of polynomials of degree less or equal to k on K ∈ Th,
see [6] for details concerning such finite element discretizations. We as-
sume that (Xh, Qh, Sh) satisfies the following approximation properties: for
(w, r, τ) ∈ Hk+1(Ω) × Hk(Ω) × Hq+1(Ω), we have that there exists inter-
polants (πhw, πhr) ∈ Xh ×Qh and πhτ ∈ Sh such that

‖w − πhw‖+ h‖∇(w − πhw)‖ ≤ C hk+1‖w‖k+1 ,

‖r − πhr‖ ≤ C hk‖r‖k ,
and

‖τ − πhτ‖+ h‖∇(τ − πhτ)‖ ≤ C hq+1‖τ‖q+1 .

The finite dimensional subspaces are assumed to satisfy the so called inverse
inequality [4]: For any integers l and m (0 ≤ l ≤ m ≤ 1) and any real
numbers p and q (1 ≤ p ≤ q ≤ ∞) it holds that

(3) ‖ψh‖m,q ≤ chl−m+d(1/q−1/p)‖ψh‖l,p ∀ψh ∈ Xh .

Moreover, we assume that the fluid velocity and pressure spaces Xh and
Qh satisfy the following discrete inf-sup condition necessary for stability [10]:

inf
qh∈Qh

sup
vh∈Xh

b(vh, qh) ≥ β > 0 .

We will employ the discontinuous finite element method to discretize the
constitutive equation. To this end, following [2], we introduce ∂ K−(u) :=
{x ∈ ∂ K ,u · n < 0 } , where ∂K is the boundary of K ∈ Th and n is the
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outward unit normal to ∂K, and τ
+
−(u)(x) := lim

ǫ→0
+
−

τ(x+ ǫu) . Moreover, we

define

(σ, τ)h :=
∑

K∈Th
(σ, τ)K ,

〈σ
+
−, τ

+
−〉h,u :=

∑

K∈Th

∫

∂ K−(u)
(σ

+
−(u), τ

+
−(u))|u · n| ds

〈〈σ
+
−〉〉2h,u := 〈σ

+
−, σ

+
−〉h,u , ‖τ‖0,Γh := (

∑

K∈Th
|τ |20,∂K)1/2 .

We approximate the convection term (u · ∇σ, τ) by means of an operator B
on Xh × Sh × Sh defined by

B(u, τ, σ) := (u · ∇τ, σ)h + 1
2(∇ · uτ, σ)+ < τ+ − τ−, σ+ >h,u

= −(u · ∇σ, τ)− 1
2(∇ · uσ, τ)+ < τ−, σ− − σ+ >h,u ,

see [15] . The last equality implies that

B(u, τ, τ) =
1

2
〈〈τ+ − τ−〉〉2h,u .

Further, we divide the time interval [0, T ] into N subintervals [tn, tn+1]
(n = 0, 1, 2, . . . , N − 1), satisfying

0 < t0 < t1 < t2 < . . . < tN−1 < tN = T .

Let ∆t := tn − tn−1 be the time step and let φn(·) be a given algorithmic
approximation to φ(·, tn). Let D(φn+1) denote the 2-step backward difference
operator

D(φn) :=
3φn − 4φn−1 + φn−2

2∆t

and I(φn+1/2) denote the extrapolation operator I(φn) := 2φn−1 − φn−2.
Based on the weak form (2), the proposed decoupled time stepping scheme

is as follows.
Algorithm 2.1. Given (ui

h, p
i
h, σ

i
h) ∈ Xh ×Qh × Sh , i = 0, 1,

find {(un
h, p

n
h, σ

n
h) ∈ Xh ×Qh × Sh such that

(4)





(Dun
h,vh) + a(un

h,vh) + c(I(un
h),u

n
h,vh) + b(vh, p

n
h)

+ 1
Re(I(σnh),D(vh)) = (fn,vh) ,

b(un
h, rh) = 0 ,

(Dσnh , τh) + 1
λ(σ

n
h , τh) +B(I(un

h), σ
n
h , τh)− 2α

λ (D(un
h), τh)

+ (ga(I(σnh),∇un
h), τh) = 0 ,

∀(vh, τh, rh) ∈ Xh × Sh × Qh, for n = 2, . . . , N . Algorithm 2.1 employs
a two-step BDF2 discretization for the time derivative terms. A two-step
extrapolation in time is used to uncouple the system into two subproblem
solves. We note that the method is decoupled but sequential: σn−1

h → un
h →

σnh .
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3. Error analysis

In this section, we discuss the accuracy and convergence of the scheme.
To this end, we assume that the exact solution satisfies the following.
Assumption A1. The exact solution (u, p, σ) of (1) satisfy

u ∈ C([0, T ];V ∩W1,∞) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)) ,

σ ∈ C([0, T ];S ∩W 1,∞) ∩H1(0, T ;Hq+1(Ω)) ∩H3(0, T ;L2(Ω)) ,

p ∈ C([0, T ];L2
0(Ω) ∩Hk(Ω)) .

We will also use the following induction hypothesis in the sequel:
Assumption A2 (Induction Hypothesis). The approximate solutions
un−1
h and σn−1

h satisfy

‖un−1
h ‖∞ , ‖σn−1

h ‖∞ ≤ K .

We define the Stokes projection as follows. Given (u, p) ∈ H1(Ω)× L2
0(Ω),

we define the Stokes projection (uh, ph) ∈ Xh,gh ×Qh as the solution of the
problem

(5)
a(u− uh,vh) + b(vh, p − p

h
) = 0 ∀vh ∈ Xh ,

b(u− uh, rh) = 0 ∀rh ∈ Qh .

Using the H2- regularity property of the Stokes operator in smooth domains
and a duality argument, we can show the following approximation property
holds:

(6) ‖u− uh‖1 + ‖p − p
h
‖ ≤ chk(‖u‖k+1 + ‖p‖k) .

Recall Gagliardo-Nirenberg’s interpolation inequality yields

‖φ‖0,∞ + ‖φ‖1,3 ≤ C‖φ‖
1
2
1 ‖φ‖

1
2
2 .

This together with H2-regularity of the Stokes operator in regular domains
yields

(7) ‖uh‖∞ + ‖uh‖1,3 ≤ c(‖u‖2 + ‖p‖1) .

We also need to estimate the following two quantities in error analysis:
First by Taylor expansion with integral remainder and by Cauchy-Schwarz
inequality, we have

(8)

‖∂tφ(tn)−D(φ(tn))‖
≤ ‖ 1

2∆t

∫ tn

tn−2

{
2(t− tn−1)

2
+ − 1

2
(t− tn−2)

2

}
∂3t φdt‖

≤ C(∆t)3/2‖∂3t φ(t)‖L2(tn−2,tn;L2(Ω)) ,

where (t− tn−1)+ = max ((t− tn−1), 0). Similarly, for the extrapolation op-
erator I(φn), we can show

(9) ‖I(φn)− φn‖Hk ≤ C(∆t)3/2‖∂2t φ(t)‖L2(tn−2,tn;Hk) .

We also cite a discrete Grönwall lemma which is useful in our analysis in
the sequel.
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Lemma 3.1 (Discrete Grönwall lemma [12]) Let d, ∆t, {an}n≥0,
{bn}n≥0, {cn}n≥0, and {dn}n≥0 be nonnegative numbers such that

an +∆t
n∑

i=0

bi ≤ ∆t
n∑

i=0

diai +∆t
n∑

i=0

ci + d,

for n ≥ 0. Suppose that ∆tdi < 1 for all i. Then

an +∆t

n∑

i=0

bi ≤ exp

(
∆t

n∑

i=0

di
1−∆tdi

)(
∆t

n∑

i=0

ci + d

)
,

for all n ≥ 0. A proof of this result can be found, for e.g, in [12].
Under the preparation above, we can obtain the following error estimate

for velocity and stress tensor.
Theorem 3.2 Suppose that the assumption (A1) and (A2) hold with a posi-
tive number h0 and a positive integer k and the initial conditions (ui

h, σ
i
h) , i =

0, 1 satisfy

1∑

i=0

‖ui
h − ui‖2 + ‖σih − σi‖2 +∆t‖D(ui

h − ui)‖2 ≤ c(h2k + h2q) .

In addition, assume that ∆t ≤ c hd/2. Then, for l = 2, . . . , N we have the
following error estimates

‖ul − ul
h‖2 +∆t

l∑

n=0

‖D(ul − ul
h)‖2 ≤ C(∆t4 + h2k + h2q)

and

‖σl − σlh‖2 +∆t

l∑

n=0

‖σl − σlh‖2 ≤ C(∆t4 + h2k + h2q)

for some constant C independent of the mesh size h and time step ∆t.
Proof. Let (un

h, p
n
h
) be the Stokes projection of (un, pn) and σnh be the

interpolation of σn. We set

un − un
h = (un − un

h) + (un
h − un

h) =: ǫn1h + en1h

σn − σnh = (σn − σnh) + (σnh − σnh) =: ǫn3h + en3h

and

pn − pnh = (pn − pn
h
) + (pn

h
− pnh) =: ǫn2h + en2h .

Obviously, from the definition of πh and (6), we have

‖ǫn1h‖+ ‖ǫn2h‖ ≤ C hk , ‖ǫn3h‖ ≤ C hq+1 and ‖ǫn1h‖1 ≤ C hk .
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Below, we need to only estimate en1h and en3h in the required norms. Sub-
tracting (1) from (4) and using the definition of Stokes projection, we have
(10)



(Den1h,vh) + a(en1h,vh) + b(vh, e
n
2h) = 〈En

h ,vh〉
+ (∂tu

n −Dun
h,vh) ∀vh ∈ Xh ,

b(en1h, rh) = 0 ∀rh ∈ Qh ,

(Den3h, τh) = (∂tσ
n −Dσnh, τh) +

〈
Ẽn
h , τh

〉
+
〈
Ên
h , τh

〉
∀τh ∈ Sh

at each time step tn, where En
h , Ẽn

h and Ên
h are defined by

〈En
h ,vh〉 := c(un,un,vh)− c(I(un

h),u
n
h,vh) +

1
Re (σ

n − I(σnh),D(vh)) ,

〈
Ẽn
h , τh)

〉
:= B(un, σn, τh)−B(I(un

h), σ
n
h , τh) ,

and 〈
Ên
h , τh

〉
:= (ga(σ

n,∇un), τh)− (ga(I(σnh),∇un
h), τh)

+ 2α
λ (D(un

h)− D(un), τh) +
1
λ(σ

n − σnh , τh) .

We further decompose the error terms En
h , Ên

h and Ẽn
h as follows:

(11)





〈En
h , vh〉 = c(un,un − un

h,vh) + c(un − I(un),un
h,vh)

+ c(I(un)− I(un
h),u

n
h,vh)− c(I(en1h),un

h,vh)

− c(I(un
h), e

n
1h,vh)− c(I(en1h), en1h,vh)

+ 1
Re(σ

n − I(σnh),D(vh)) =:
7∑

i=1

〈En
i ,vh〉 ,

(12)



〈
Ẽn
h , ψh

〉
= B(I(un

h), σ
n − σnh, τh)

+ B(un − I(un), σn, τh) +B(I(un)− I(un
h), σ

n, τh)

− B(I(en1h), σn, τh)−B(I(un
h), e

n
3h, τh) =:

5∑

i=1

〈
Ẽn
i , τh

〉
.

and
(13)



〈
Ên
h , τh

〉
= (ga(σ

n − I(σn),∇un), τh)

+ (ga(I(σn)− I(σnh),∇un), τh)

+ (ga(I(σnh),∇(un − un
h)), τh) +

2α
λ (D(un

h)− D(un), τh)

+ 1
λ (σ

n − σn, τh)− 1
λ(e

n
3h, τh) =:

6∑

i=1

〈
Ên
i , τh

〉
.
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Now setting (vh, τh) = (en1h, e
n
3h) in (10) and using the skew symmetry of

the trilinear form c(·, ·, ·) and coercivity of B(·, ·, ·), we obtain
(14)



(Den1h, e
n
1h) +

2(1−α)
Re ‖D(en1h)‖2 = (∂tu

n −Dun
h, e

n
1h) +

7∑

i=1

i 6=5,i 6=6

〈En
i , e

n
1h〉

(Den3h, en3h) + 1
λ‖en3h‖2 + 1

2〈〈e
n,+
3h − en,−3h 〉〉2h,en

3h
= (∂tσ

n −Dσnh, en3h)

+
∑5

i=1

〈
Ên
i , e

n
3h

〉
+
∑4

i=1

〈
Ẽn
i , e

n
3h

〉
.

We proceed to bound each term on the right-hand side of (14) and absorb
like-terms into the left-hand side. The first terms on the right-hand side of
(14) can be estimated with the help of (6) and (8). By Cauchy-Schwarz and
triangle inequality, we have

(∂tu
n −Dun

h, e
n
1h) ≤ {‖∂tun −Dun‖+ ‖Dun −Dun

h‖} ‖en1h‖ .
Also notice since

Dφn =
3

2∆t

∫ tn

tn−1

∂tφdt−
1

2∆t

∫ tn−1

tn−2

∂tφdt

we have

‖Dφn‖ ≤ C√
∆t

‖∂tφ‖L2(tn−2,tn;L2(Ω)) .

Therefore by (6) and (8), we have
(15)

(∂tu
n −Dun, en1h) ≤ C

{
(∆t)3/2‖∂3t u‖L2(tn−2,tn;L2(Ω))

+ hk√
∆t

‖(∂tu, ∂tp)‖L2(tn−2,tn;Hk+1(Ω)×Hk(Ω))

}
‖en1h‖ .

Similarly, we can show that

(16)
(∂tσ

n −Dσn, en3h) ≤ C
{
(∆t)3/2‖∂3t σ‖L2(tn−2,tn;L2(Ω))

+ hq√
∆t

‖∂tσ‖L2(tn−2,tn;Hk+1(Ω))

}
‖en3h‖ .

We now estimate the terms in
〈 7∑

i=1

i 6=5,i 6=6

En
i , e

n
1h

〉
,

〈
5∑

i=1

Ên
i , e

n
3h

〉
and

〈
4∑

i=1

Ẽn
i , e

n
3h

〉
. Using Hölders inequality, Gagliardo-Nirenberg’s inequality,

(6)-(7) and (9), we obtain

| 〈En
1 , e

n
1h〉 | ≤ C‖un‖1‖un − un

h‖1‖en1h‖1 ≤ Chk‖u‖C([tn−2 ,tn];Hk(Ω))‖en1h‖1 ,
| 〈E2, en1h〉 | ≤ C‖un − I(un)‖(‖∇un

h‖L3(Ω) + ‖un
h‖∞)‖en1h‖1

≤ C(∆t)3/2‖∂2t u‖L2(tn−2,tn;L2(Ω))‖en1h‖1 ,
| 〈En

3 , e
n
1h〉 | ≤ C‖I(un)− I(un

h)‖1(‖un
h‖∞ + ‖∇un

h‖L3(Ω))‖en1h‖1
≤ Chk‖u‖C([tn−2 ,tn];Hk+1(Ω))‖en1h‖1 ,
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| 〈En
4 , e

n
1h〉 | ≤ C‖I(en1h)‖(‖un

h‖∞ + ‖∇un
h‖L3(Ω))‖en1h‖1

and

| 〈En
7 , e

n
1h〉 | ≤ C {‖σn − I(σn)‖+ ‖I(en3h)‖} ‖D(en1h)‖

≤ C
{
(∆t)3/2‖∂2t σ‖L2(tn−2,tn;L2(Ω)) + ‖I(en3h)‖

}
‖D(en1h)‖ .

Collecting these estimates, we obtain∣∣∣∣∣∣∣

〈
7∑

i=1

i 6=5,i 6=6

En
i , e

n
1h

〉∣∣∣∣∣∣∣

≤ C

{
hk + (∆t)3/2 +

n∑

i=n−1

(‖ei−1
1h ‖+ ‖ei−1

3h ‖)
}
‖en1h‖1 .

We next estimate the terms in
∑4

i=1

〈
Ên
i , e

n
4h

〉
by Hölder’s inequality, in-

duction hypothesis (A2), (6) and (9). We obtain

|
〈
Ên
1 , e

n
3h

〉
| ≤ C‖∇un‖∞‖σn − I(σn)‖en3h‖

≤ C(∆t)3/2‖∂2t σ‖L2(tn−2,tn;L2(Ω))|‖en3h‖ ,

|
〈
Ên
2 , e

n
3h

〉
| ≤ C‖∇un‖∞‖I(σn − σnh)‖‖en3h‖

≤ C(‖I(σn − σnh)‖+ ‖I(σnh − σnh)‖)‖en3h‖
≤ C(hq+1‖σ‖C([tn−2 ,tn];Hq+1(Ω)) + ‖I(en3h)‖)‖en3h‖ ,

|
〈
Ên
3 , e

n
3h

〉
| ≤ C‖I(σnh)‖∞‖∇(un − un

h)‖+ ‖∇(un
h − un

h)‖‖en3h‖

≤ C(hk‖u‖C([tn−2 ,tn];Hk+1(Ω)) + ‖D(en1h)‖)‖en3h‖ ,

|
〈
Ên
4 , e

n
3h

〉
| ≤ C(‖un − un

h‖1 + ‖D(un
h − un

h)‖)‖en3h‖

≤ C(hk‖u‖C([tn−1,tn];Hk+1(Ω)) + ‖D(en1h)‖)‖en3h‖
and

|
〈
Ên
5 , e

n
3h

〉
| ≤ C‖σn − σnh‖ ≤ C hq+1‖σ‖C([tn−1,tn];Hq+1(Ω)) .

Collecting these estimates, we obtain
(17)
5∑

i=1

〈
Ên
i , e

n
3h

〉
≤ C

{
(∆t)3/2 + hq+1 + hk + ‖D(en1h)‖+

n∑

i=n−1

‖ei−1
3h ‖

}
‖en3h‖ .

Let us next estimate the terms in
∑5

i=1

〈
Ẽn
i , e

n
3h

〉
. First notice that by the

continuity of σn − σnh, we have that
〈
Ẽn
1 , e

n
3h

〉
= (I(un

h) · ∇(σn − σnh), e
n
3h) +

1

2
(∇ · I(un

h)(σ
n − σnh), e

n
3h) .

Therefore we estimate it as follows

|
〈
Ẽn
1 , e

n
3h

〉
| ≤

{
‖I(un

h)‖∞‖∇(σn − σnh)‖+
1

2
‖∇I(un

h)‖∞‖σn − σnh‖
}
‖en3h‖ .
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Employing the inverse inequality (3), induction hypothesis (A2) and the
approximation property, we obtain

|
〈
Ẽn
1 , e

n
3h

〉
| ≤ {‖I(un

h)‖∞‖∇(σn − σnh)‖
+ Ch−1‖I(un

h)‖∞‖σn − σnh‖
}
‖en3h‖

≤ Chq‖σ‖C([tn−1 ,tn];Hq+1(Ω))‖en3h‖ .

For the term
〈
Ẽn
2 , e

n
3h

〉
, using the divergence free property of un and the

continuity of σ, we can write it as
〈
Ẽn
2 , e

n
3h

〉
= (un−I(un) ·∇σn, en3h). Thus

estimating as usual, we obtain

|
〈
Ẽn
2 , e

n
3h

〉
| ≤ C‖∇σn‖∞‖un − I(un)‖‖en3h‖

≤ C(∆t)3/2‖∂2t u‖L2(tn−2,tn;L2(Ω))‖en3h‖ .

Similarly for the terms
〈
Ẽn
3 , e

n
3h

〉
and

〈
Ẽn
4 , e

n
3h

〉
, by the continuity of σ, we

can estimate them as

|
〈
Ẽn
3 , e

n
3h

〉
| ≤ C

{
‖∇σn‖∞‖I(un − un

h)‖+ 1
2‖σn‖∞‖I(un − un

h)‖1
}
‖en3h‖

≤ C hk‖u‖C([tn−2 ,tn];Hk+1(Ω))‖en3h‖

and

|
〈
Ẽn
4 , e

n
3h

〉
| ≤ C

{
‖∇σn‖∞‖I(en1h)‖+ 1

2‖σn‖∞‖∇I(en1h)‖1
}
‖en3h‖ .

Collecting these estimates, we obtain
∣∣∣∣∣

〈
4∑

i=1

Ẽn
i , e

n
3h

〉∣∣∣∣∣

≤ C

{
hk + hq + (∆t)3/2 +

n∑

i=n−1

(‖ei−1
1h ‖+ ‖D(ei−1

1h )‖)
}
‖en3h‖ .

Employing the preceding estimates and (15)-(17) in (14) and using Young’s
inequality, we obtain
(18)



(Den1h, e
n
1h) +

(1−α)
Re ‖D(en1h)‖2 ≤ C(

n∑

i=n−1

‖ei−1
1h + ‖ei−1

3h ‖2) + Υn
1

(Den3h, en3h) + 1
2λ‖en3h‖2 + 1

2〈〈e
n,+
3h − en,−3h 〉〉2h,en

3h
≤ Υn

2

+ C[
n+1∑

i=n−1

‖ei−1
3h ‖2 +

n∑

i=n−1

‖ei−1
1h ‖2]

+ (1−α)
4Re

n∑

i=n−1

‖D(ei−1
1h )‖2 .
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where

Υn
1 := C1

{
(∆t)3 +

h2k

∆t
+ h2k

}
and Υn

2 := C2

{
(∆t)3 +

h2k

∆t
+ h2k + h2q

}
.

Notice that by the regularity assumptions on the solution (u, p, σ), we have
that

(19) ∆t
N∑

n=1

(Υn
1 +Υn

2 ) ≤ C((∆t)4 + h2k + h2q) .

Thus adding (18)1 − (18)2 and summing the result from n = 2 to m, we
obtain
(20)

∆t

m∑

n=2

((Den1h,Den3h), (en1h, en3h)) + (1−α)
2Re ∆t

m∑

n=2

‖Den1h‖2 +
∆t

2λ

m∑

n=2

‖en3h‖2

+ ∆t
2

m∑

n=2

〈〈en,+3h − en,−3h 〉〉2

≤ C((∆t)4 + h2k + h2q)

+ C∆t

m∑

n=2

(‖en1h‖2 + ‖en3h‖2) .

Finally notice that the BDF2 operator D satisfies the identity [19]
(21)

m∑

n=2

∆t(D(φn), φn) = 1
4‖φm‖2 + 1

4‖2φm − φm−1‖2 − 1
4‖φ1‖2

− 1
4‖2φ1 − φ0‖2 + 1

4

m∑

n=2

‖φn − 2φn−1 + φn−2‖2 .

Therefore, applying the discrete Grönwall lemma (Lemma 3.1) to (20), we
obtain that

‖(em1h, em3h)‖2

+ (1−α)∆t
2Re

m∑

n=2

‖Den1h‖2 +
∆t

2λ

m∑

n=2

‖en3h‖2

≤ C((∆t)4 + h2k + h2q) .

The required error estimate now follows from (6) and triangle inequality. �

Verification of induction hypothesis (A2) Assume (A2) is true for
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n = 1, 2, . . . ,m−1. By interpolation properties, inverse estimates, and The-
orem 3.2, we have

(22)

‖um
h ‖∞ ≤ ‖um

h − um‖∞ + ‖um‖∞
≤ ‖um

h − um
h ‖∞ + ‖um

h − um‖∞ + ‖um‖∞
≤ Ch−d/2[‖um

h − um
h ‖+ ‖um

h − um‖] +M

≤ Ch−d/2[(∆t)2 + hk + hq] +M .

Therefore, if we set k and q such that k − d/2 ≥ 0, q − d/2 ≥ 0 and ∆t,

h such that ∆t < hd/4/C then (6) implies ‖un
h‖∞ ≤ M̂ . Similarly, we can

show ‖σnh‖∞ ≤ M̂ .

Theorem 3.3 Under the assumptions in Theorem 3.2, the approximate
pressure ph in (4) satisfies

‖p− ph‖l2(L2(Ω)) ≤
C√
∆t

(∆t2 + hk + hq) ,

for some constant C independent of mesh size h and time step ∆t.
Proof. By the discrete inf-sup condition, it follows from (10)1 that
(23)

‖en2h‖ ≤ 1

β
sup

vh∈Xh

b(vh, e
n
2h)

‖vh‖1

≤ 1

β
sup

vh∈Xh

1

‖vh‖1

{
(∂tu

n −Dun
h,vh) +

〈
7∑

i=1

En
i ,vh

〉
− (Den1h,vh)

− a(en1h,vh)} ,
where En

i , i = 1, . . . , 7 are as defined in the proof of Theorem 3.2. We can
estimate the first term on the right-hand-side of (23) as we did in (15) to
obtain

(24) (∂tu
n −Dun

h,vh) ≤ C

{
(∆t)3/2 +

hk√
∆t

}
‖vh‖ .

The terms in

〈
7∑

i=1

i 6=5,i 6=6

En
i ,vh

〉
can also be estimated as in the proof of The-

orem 3.2 to obtain
(25)

|
〈

7∑

i=1

i 6=5,i 6=6

En
i ,vh

〉
| ≤ C

{
hk + (∆t)3/2 +

n∑

i=n−1

‖ei−1
1h ‖+ ‖ei−1

3h ‖
}
‖vh‖1 .

Let us next estimate 〈En
5 ,vh〉 and 〈En

6 ,vh〉. First notice by Theorem 3.2 and
inverse inequality, we have that
(26)

‖en1h‖1 ≤ Cmin{‖en1h‖/h, ‖en1h‖1}
≤ Cmin{(∆t2 + hk + hq)/h, (∆t2 + hk + hq)/(∆t)} ≤ C .
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Therefore by Hölder’s, Gagliardo-Nirenberg inequality and (26), we obtain

(27)





| 〈En
5 ,vh〉 | ≤ C(‖I(un

h)‖L3(Ω) + ‖I(un
h)‖L∞(Ω))‖en1h‖1‖vh‖1 ,

| 〈En
6 ,vh〉 | ≤ C‖I(en1h)‖1‖en1h‖1‖vh‖1 ≤ C‖I(en1h)‖1‖vh‖1 .

Therefore employing estimates (24), (26) and (27) in (23), and estimating the
last two terms on the right-hand side of (23) by Cauchy-Schwarz inequality,
we obtain

‖en2h‖ ≤ C

{
hk + hk√

∆t
+ (∆t)3/2 +

2∑

i=0

‖en−i
1h ‖1

+
∑2

i=1[‖en−i
1h ‖+ ‖en−i

3h ‖] + ‖Den1h‖
}
.

The required error estimate now follows from the last inequality by using
Theorem 3.2 and triangle inequality. �

Let us next derive optimal error estimates of the time derivatives of the
velocity and use it to improve the error estimate of the pressure.
Corollary 3.4 Suppose the assumptions of Theorem 3.2 hold and assume
u ∈ H2(0, T ;H1(Ω)) and σ ∈ H2(0, T ;H1(Ω)). In addition, assume the

initial conditions ui
h , i = 0, 1 satisfy

1∑

i=0

‖u(ti)−ui
h‖1 ≤ hk and b(ui

h, rh) =

0 , ∀rh ∈ Qh . Then for any h ∈ (0, h0] the approximate velocity un
h satisfies

‖∂tu−Duh‖l2(L2(Ω)) ≤ c(∆t2 + hk + hq) .

Moreover, we have

‖u− uh‖l∞(H1(Ω)) ≤ c(∆t2 + hk + hq) ,

for some constant c independent of the mesh size h and time step ∆t.
Proof. Putting vh = D(en1h) into (10) yields

(28) ‖Den1h‖2 + a(en1h,Den1h) = (∂tu(tn)−Dun
h,Den1h) + 〈En

h ,Den1h〉 .
Let us use the identity

(D(φn), φn) =
1

2
D(‖φn‖2) + 1

2∆t
[‖φn − φn−1‖2 − ‖φn−1 − φn−2‖2]

+
1

4∆t
‖φn − 2φn−1 + φn−2‖2

to rewrite the bilinear form a(·, ·) on the left-hand side of (28) and also split
up the nonlinear term 〈En

h ,D(en1h)〉 on the right-hand side of (28) as we did
in the proof of Theorem 3.2. We obtain

(29)

‖D(en1h)‖2 +
(1−α)
Re D(‖Den1h‖2) +

(1−α)
Re∆t [‖D(en1h − en−1

1h )‖2

−‖D(en−1
1h − en−2

1h )‖2] + (1−α)
2Re∆t‖D(en1h − 2en−1

1h + en−2
1h )‖2

= (∂tu(tn)−D(un
h),D(en1h)) +

7∑

i=1

〈En
i ,D(en1h)〉 ,
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where En
i , i = 1, 2, . . . , 7, are as defined in the proof of Theorem 3.2. The

first term on the right-hand-side of (29) can be estimated as in the proof of
Theorem 3.2 to obtain

(∂tu
n −Dun,D(en1h))

≤ C
{
(∆t)3/2‖∂3t u‖L2(tn−2,tn;L2(Ω))

+ hk√
∆t

‖(∂tu, ∂tp)‖L2(tn−2,tn;Hk+1(Ω)×Hk(Ω))

}
‖D(en1h)‖ .

We estimate

7∑

i=1

〈En
i ,D(en1h)〉 as usual using Hölder’s inequality, Gagliardo-

Nirenberg inequality, (6) and (9). We obtain

| 〈En
1 ,D(en1h)〉 | ≤ C(‖u(tn)‖∞ + ‖∇u(tn)‖L3)‖u(tn)− un

h‖1‖D(en1h)‖
≤ C hk‖(u, p)‖C[tn−2 ,tn];Hk+1(Ω)×Hk(Ω))‖D(en1h)‖ ,

| 〈En
2 ,D(en1h)〉 | ≤ C‖u(tn)− I(u(tn))‖1(‖un

h‖∞ + ‖∇un
h‖L3)‖D(en1h)‖

≤ C(∆t)3/2‖∂2t u‖L2(tn−2,tn;H1(Ω))‖D(en1h)‖ ,

| 〈En
3 ,D(en1h)〉 | ≤ C(‖un

h‖∞ + ‖∇un
h‖L3)‖I(un − un

h)‖1‖D(en1h)‖
≤ Chk‖(u, p)‖C[tn−2 ,tn];Hk+1(Ω)×Hk(Ω))‖D(en1h)‖ ,

| 〈En
4 ,D(en1h)〉 | ≤ c(‖un

h‖∞ + ‖∇un
h‖L3)‖I(en1h)‖1‖D(en1h)‖ ,

and

| 〈En
5 ,D(en1h)〉 | ≤ c(‖I(un

h)‖∞ + ‖∇I(un
h)‖L3)‖en1h‖1‖D(en1h)‖ .

From the inverse inequality (Assumption (A3)) and Sobolev inequality, it
follows that

(30) ‖φh‖∞ + ‖∇φh‖L3(Ω) ≤ ch−
d
6 ‖φh‖1 ∀φh ∈ Xh .

Using (30), we can estimate 〈ℵn
6 ,D(en1h)〉 as follows

(31)
| 〈En

6 ,D(en1h)〉 | ≤ [‖I(en1h)‖∞ + ‖∇I(en1h)‖L3 ]‖en1h‖1‖D(en1h)‖

≤ c∗‖en1h‖1‖I(en1h)‖1h−
d
6 ‖D(en1h)‖ .

Alternatively, we can estimate 〈ℵn
6 ,D(en1h)〉 as follows

(32)
| 〈En

6 ,D(en1h)〉 | = | 4
∆tc(I(en1h), en1h, e

n−1
1h )|+ | 1

4∆tc(I(en1h), en1h, e
n−2
1h )|

≤ c∗

∆t‖I(en1h)‖1‖en1h‖1[‖e
n−1
1h ‖1 + ‖en−2

1h ‖1] .
Combining (31) and (32), we have

(33) | 〈En
6 ,D(en1h)〉 | ≤ cγn‖I(en1h)‖1[‖D(en1h)‖+

2∑

i=1

‖en−i
1h ‖1] ,

where

(34) γn = min{h− d
6 , (∆t)−1}‖en1h‖1 .



SECOND-ORDER DECOUPLED SCHEME FOR VISCOELASTIC FLOW 103

In order to estimate 〈En
7 ,D(en1h)〉, we first write it as

〈En
7 ,D(en1h)〉 = −(∇ · (σn − I(σnh)),D(en1h))

= −(∇ · (σn − I(σn)),D(en1h))− (∇ · I(σn − σnh),D(en1h)) .

Then by Cauchy-Schwarz inequality, we have

| 〈En
7 ,D(en1h)〉 | ≤ C[‖σn − I(σn)‖1 + ‖I(σn − σnh)‖1 + ‖I(en3h)‖]‖D(en1h)‖

≤ C[(∆t)3/2‖∂2t σ‖L2(tn−2,tn;H1(Ω))

+ hk‖σ‖C([tn−2 ,tn];Hk+1(Ω)) +
∑n

i=n−1 ‖ei−1
3h ‖]‖D(en1h)‖ .

Employing these estimates in (29), we can write it as

(35)

1
2‖D(en1h)‖2 +

(1−α)
Re D(‖Den1h‖2)

+ (1−α)
Re∆t [‖D(en1h − en−1

1h )‖2 − ‖D(en−1
1h − en−2

1h )‖2]
+ (1−α)

2Re∆t‖D(en1h − 2en−1
1h + en−2

1h )‖2

≤ C
{
γ2n‖I(en1h)‖21 + αn

}
,

where

αn := (∆t)3‖∂3t u‖2L2(tn−2,tn;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tp)‖2L2(tn−2,tn;Hk+1×Hk)

+ h2k‖(u, p)‖2
C([tn−2 ,tn];Hk+1×Hk)

+ h2k‖σ‖2
C([tn−2 ,tn];Hk+1)

+ (∆t)3‖∂2t σ‖2L2(tn−2,tn;H1(Ω)) + (∆t)3‖∂2t u‖2L2(tn−2,tn;H1(Ω))

+

2∑

i=0

‖en−i
1h ‖21 +

2∑

i=1

‖en−i
3h ‖21 .

Notice by the telescoping property and the identity 3
2‖a‖2− 1

2‖b‖2+‖a−b‖2 =
1
2‖a‖2 + (

√
2a− 1√

2
b)2, we have

(36)

m∑

n=2

{
D(‖φn‖2) + 1

∆t

[
‖φn − φn−1‖2 − ‖φn−1 − φn−2‖2

]}

= 1
2∆t‖φm‖2 + 1

2∆t‖2φm − φm−1‖2 − 1
2∆t‖φ1‖2

− 1
2∆t‖2φ1 − φ0‖2 .
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Therefore summing from n = 2 to m and using the assumption about initial
approximations, we obtain
(37)

∆t
2

m∑

i=2

‖D(en1h)‖2 + (1−α)
2Re ‖D(em1h)‖2 +

(1− α)

2Re
‖2D(em1h)− D(em−1

1h )‖2

+ (1−α)
2Re

m∑

n=2

‖D(en1h − 2en−1
1h + en−2

1h )‖2

≤ C

{
m∑

n=2

∆tγ2n‖I(en1h)‖21 +
m∑

i=2

αn∆t+ h2k

}
.

By the regularity assumptions on the solution (u, p, σ) and the error bounds
of Theorem 3.2, we have

(38) ∆t

N∑

i=1

αi ≤ C((∆t)4 + h2k + h2q) .

Moreover, by (34) and the error bounds of Theorem 3.2, we have

∆t

N∑

i=1

γ2i ≤ min{h− d
3 , (∆t)−2}∆t

N∑

i=1

‖ei1h‖21

≤ Cmin{h− d
3 , (∆t)−2}(h2k + h2q + (∆t)4)

≤ Cmin{h2k− d
3 + h2q−

d
3 + (∆t)2} ≤ C .

Therefore by applying discrete Gronwall lemma to (37), we obtain
(39)

∆t
m∑

i=2

‖D(en1h)‖2 + (1−α)
Re ‖D(em1h)‖2 +

(1− α)

Re
‖2D(em1h)−D(em−1

1h )‖2

+ (1−α)
Re

m∑

n=2

‖D(en1h − 2en−1
1h + en−2

1h )‖2

≤ C((∆t)4 + h2k + h2q) .

It now follows from (39) and (6) that

(40)
∆t

m∑

n=2

‖D(un)−D(un
h)‖2 ≤ C((∆t)4 + h2k + h2q)

‖un − un
h‖21 ≤ C((∆t)4 + h2k + h2q) .

Finally (40)1 and (8) yields

‖∂tu−Duh‖l2(L2(Ω)) ≤ c(∆t2 + hk + hq) .

�

Corollary 3.5 Suppose the assumptions of Corollary 3.4 hold. Then the
approximate pressure pnh in (4) satisfies

‖p − ph‖l2(L2(Ω)) ≤ C(∆t2 + hk + hq) .
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Proof. A proof of this Corollary can be furnished by arguing along the
same line as in the proof of Theorem 3.3. Therefore we only sketch it here.
It follows from the error bounds in Corollary 3.4

(41) ∆t‖Den1h‖2 ≤ c((∆t)4 + h2k + h2q) .

Therefore using (41) in (27), we obtain the required estimate. �

4. Numerical results

In this section, we present two numerical examples to demonstrate the
convergence and stability of the algorithm proposed in this paper. The spa-
tial domain Ω is partitioned using a structured triangular mesh. The spatial
discretization is effected via the (P2, P1, P2dc) element, i.e., the continuous
piecewise quadratics and continuous piecewise linear finite element spaces
(Taylor-Hood finite element pair) for the fluid velocity and pressure approx-
imations, and discontinuous piecewise quadratics for the stress tensor.

4.1. Example 1: Accuracy test. In this example, we report some nu-
merical simulations to test the convergence theory presented in Theorem
3.2. Taking the spatial domain to be Ω = (0, 1)× (0, 1), the time interval to
be [0, T ] = [0, 1] and the parameters to be Re = 1.0, λ = 1.0, a = 0, α = 0.5,
we consider the exact solution (u, p, σ) given by

u = (−(1− cos(2πx)) sin(2πy)e−t, sin(2πx)(1 − cos(2πy))e−t) ,

σ = 2αD and p = (sin(4πx) + sin(4πy))e−t .

satisfying the divergence free condition. The source terms (right-hand sides),
initial conditions and boundary conditions are chosen to correspond the
exact solution.

The performance of the numerical scheme studied herein is also compared
with the coupled scheme (monolithic, fully implicit scheme) derived by set-
ting I(un

h) = un
h and I(σnh) = σnh in Algorithm 2.1. The monolithic scheme

requires a system of nonlinear algebraic equations to be solved using an it-
erative method at each time step. We employ Newton iterative method for
solving this nonlinear algebraic equations and the iteration is stopped when
relative nonlinear residual is less than 10−6. For both the monolithically
coupled scheme and the decoupled scheme, a banded Gaussian elimination
is used to solve the linear algebraic systems.

First, we compare the errors with both the decoupled scheme and the
monolithic coupled scheme. In Table 1, we compare both schemes at time
tN = 1.0, with varying spacing h = 1/2, 1/4, 1/8, 1/16, 1/32 and fixed time
step∆t = 0.01. As can be seen from Table 1, the error estimates of u and σ in
Theorem 3.2 for the orders of convergence in space agree with computational
results.

Moreover, it can be seen that both the schemes achieve similar precision.
In order to determine the order of convergence α with respect to the time
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Table 1. Convergence performance of the decoupled and
monolithic (coupled) schemes at time tN = 1.0, with fixed
time step ∆t = 0.01.

Coupled Scheme Decoupled Scheme

h ‖uN − uN
h ‖ ‖σN − σNh ‖ ‖uN − uN

h ‖ ‖σN − σNh ‖
1
2 0.03414835 0.02563487 0.03425877 0.025748644

1
4 0.00858735 0.00657473 0.00883213 0.00664378

1
8 0.00215406 0.00166191 0.00226471 0.00170401

1
16 0.00054004 0.00041678 0.00057288 0.00042733

1
32 0.00013505 0.000093346 0.00013729 0.00010686

Table 2. Convergence order of O(∆tα) of the decoupled
scheme at time tN = 1.0, with the fixed spacing h = 1

32 .

∆t ‖uN − uN
h ‖ Order ‖σN − σNh ‖ Order

1/20 4.2144355 × 10−5 - 3.8766845 × 10−5 -

1/40 1.07092779 × 10−5 1.9764782 0.98340386 × 10−5 1.9789674

1/80 0.27015727 × 10−5 1.9869898 0.24761613 × 10−5 1.9896787

1/160 0.06780444 × 10−5 1.9943478 0.06204215 × 10−5 1.9967848

step ∆t, we fix the spatial spacing h and use the following approximation

(42) α ≈ log2
‖vh,∆t(x, tN )− vh,∆t

2
(x, tN )‖

‖vh,∆t
2
(x, tN )− vh,∆t

4
(x, tN )‖ .

In Table 2, we list the values of the right-hand side of (42) with a fixed
spacing h = 1/32 and varying time step ∆t = 1/20, 1/40, 1/80, 1/160. As
can be seen the orders of convergence in time are all second order for the
decoupled scheme suggesting that the orders of convergence in time in error
estimates in Theorem 3.2 for the L2− norm of u, φ and σ are optimal.

4.2. Example 2: Stability test. In this example, we simulate viscoelastic
flow through 4 : 1 abrupt contraction with centerline symmetry, a prototyp-
ical problem for viscoelastic fluid flow. The computational domain is chosen
to be Ω := (0, 10)× (0, 1) \ (4, 10)× (1/4, 1) . It is assumed that the channel
lengths are sufficiently long for fully developed Poiseuille flow at both the
inflow and outflow boundaries,

Γin := {(x, y) : x = 0, 0 ≤ y ≤ 1 }
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Figure 1. System energy with different time steps: (a) Sys-
tem energy with decoupled BDF2 scheme, (b) System energy
with coupled BDF2 scheme.

and

Γout := {(x, y) : x = 10, 0 ≤ y ≤ 1/4 } .
The parameters Re, α, λ and a are chosen to be 1, 8/9, 0.7 and 1, respectively.
We impose zero boundary condition for the velocity on the channel walls and
specify symmetric natural boundary condition on the centerline (y = 0, 0 ≤
x ≤ 10) of the spatial domain. Fully developed flow conditions are applied
for the fluid velocity and viscoelastic stress tensor at the inlet but only for
the velocity at the outlet, i.e.,

u = ((1− y2)/32, 0) on Γin , u = (2(1/16 − y2), 0) on Γout ,

and

σ11 = 2λy2α/256 , σ12 = σ21 = −αy/16 and σ22 = 0 on Γin .

The discrete system energy defined by En := ‖un
h‖2+‖σnh‖2 was computed

with these data for varying time step size ∆t and fixed ∆x = 0.001 . In
Figure 1, we present the time evolution of the discrete system energy En

for four time step sizes ∆t = 1/5, 1/10, 1/20, 1/40 but for fixed spacing
h = 1/100 until T = 20. We observe that all four energy curves show that
steady state is reached for all time step sizes for both coupled and decoupled
BDF2 schemes. Moreover, we observe that the proposed algorithm is stable
with no restriction on ∆t.

5. Concluding remarks

We proposed and investigated an accurate and efficient second-order de-
coupled time stepping scheme for solving viscoelastic fluid flow system. A
second order extrapolation was used to effect a decoupling of the system so
that two decoupled problems could be solved at each time step. A discon-
tinuous Galerkin finite element method was used to spatially approximate
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the constitutive equation for the extra stress tensor while standard Galerkin
finite element method was used to approximate the Navier-Stokes equations.
A priori error estimates are derived for the fully discrete system assuming
the mesh size ∆x and time step step size ∆t satisfy ∆t ≤ C hd/4. Numerical
results presented confirm the theoretical error and stability estimates.
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