CSIAM Trans. Appl. Math., 2 (2021), pp. 131-161.
Published online: 2021-02
Cited by
- BibTex
- RIS
- TXT
In reflection seismology, the inversion of subsurface reflectivity from the observed seismic traces (super-resolution inversion) plays a crucial role in target detection. Since the seismic wavelet in reflection seismic data varies with the travel time, the
reflection seismic trace is non-stationary. In this case, a relative amplitude-preserving
super-resolution inversion has been a challenging problem. In this paper, we propose
a super-resolution inversion method for the non-stationary reflection seismic traces.
We assume that the amplitude spectrum of seismic wavelet is a smooth and unimodal
function, and the reflection coefficient is an arbitrary random sequence with sparsity.
The proposed method can obtain not only the relative amplitude-preserving reflectivity but also the seismic wavelet. In addition, as a by-product, a special $Q$ field can be
obtained.
The proposed method consists of two steps. The first step devotes to making an
approximate stabilization of non-stationary seismic traces. The key points include:
firstly, dividing non-stationary seismic traces into several stationary segments, then
extracting wavelet amplitude spectrum from each segment and calculating $Q$ value by
the wavelet amplitude spectrum between adjacent segments; secondly, using the estimated $Q$ field to compensate for the attenuation of seismic signals in sparse domain to
obtain approximate stationary seismic traces. The second step is the super-resolution
inversion of stationary seismic traces. The key points include: firstly, constructing
the objective function, where the approximation error is measured in $L_2$ space, and
adding some constraints into reflectivity and seismic wavelet to solve ill-conditioned
problems; secondly, applying a Hadamard product parametrization (HPP) to transform the non-convex problem based on the $L_p (0 < p < 1)$ constraint into a series of
convex optimization problems in $L_2$ space, where the convex optimization problems
are solved by the singular value decomposition (SVD) method and the regularization
parameters are determined by the L-curve method in the case of single-variable inversion. In this paper, the effectiveness of the proposed method is demonstrated by both
synthetic data and field data.
In reflection seismology, the inversion of subsurface reflectivity from the observed seismic traces (super-resolution inversion) plays a crucial role in target detection. Since the seismic wavelet in reflection seismic data varies with the travel time, the
reflection seismic trace is non-stationary. In this case, a relative amplitude-preserving
super-resolution inversion has been a challenging problem. In this paper, we propose
a super-resolution inversion method for the non-stationary reflection seismic traces.
We assume that the amplitude spectrum of seismic wavelet is a smooth and unimodal
function, and the reflection coefficient is an arbitrary random sequence with sparsity.
The proposed method can obtain not only the relative amplitude-preserving reflectivity but also the seismic wavelet. In addition, as a by-product, a special $Q$ field can be
obtained.
The proposed method consists of two steps. The first step devotes to making an
approximate stabilization of non-stationary seismic traces. The key points include:
firstly, dividing non-stationary seismic traces into several stationary segments, then
extracting wavelet amplitude spectrum from each segment and calculating $Q$ value by
the wavelet amplitude spectrum between adjacent segments; secondly, using the estimated $Q$ field to compensate for the attenuation of seismic signals in sparse domain to
obtain approximate stationary seismic traces. The second step is the super-resolution
inversion of stationary seismic traces. The key points include: firstly, constructing
the objective function, where the approximation error is measured in $L_2$ space, and
adding some constraints into reflectivity and seismic wavelet to solve ill-conditioned
problems; secondly, applying a Hadamard product parametrization (HPP) to transform the non-convex problem based on the $L_p (0 < p < 1)$ constraint into a series of
convex optimization problems in $L_2$ space, where the convex optimization problems
are solved by the singular value decomposition (SVD) method and the regularization
parameters are determined by the L-curve method in the case of single-variable inversion. In this paper, the effectiveness of the proposed method is demonstrated by both
synthetic data and field data.