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Abstract. In reflection seismology, the inversion of subsurface reflectivity from the ob-
served seismic traces (super-resolution inversion) plays a crucial role in target detec-
tion. Since the seismic wavelet in reflection seismic data varies with the travel time, the
reflection seismic trace is non-stationary. In this case, a relative amplitude-preserving
super-resolution inversion has been a challenging problem. In this paper, we propose
a super-resolution inversion method for the non-stationary reflection seismic traces.
We assume that the amplitude spectrum of seismic wavelet is a smooth and unimodal
function, and the reflection coefficient is an arbitrary random sequence with sparsity.
The proposed method can obtain not only the relative amplitude-preserving reflectiv-
ity but also the seismic wavelet. In addition, as a by-product, a special Q field can be
obtained.

The proposed method consists of two steps. The first step devotes to making an
approximate stabilization of non-stationary seismic traces. The key points include:
firstly, dividing non-stationary seismic traces into several stationary segments, then
extracting wavelet amplitude spectrum from each segment and calculating Q value by
the wavelet amplitude spectrum between adjacent segments; secondly, using the esti-
mated Q field to compensate for the attenuation of seismic signals in sparse domain to
obtain approximate stationary seismic traces. The second step is the super-resolution
inversion of stationary seismic traces. The key points include: firstly, constructing
the objective function, where the approximation error is measured in L2 space, and
adding some constraints into reflectivity and seismic wavelet to solve ill-conditioned
problems; secondly, applying a Hadamard product parametrization (HPP) to trans-
form the non-convex problem based on the Lp (0 < p < 1) constraint into a series of
convex optimization problems in L2 space, where the convex optimization problems
are solved by the singular value decomposition (SVD) method and the regularization
parameters are determined by the L-curve method in the case of single-variable inver-
sion. In this paper, the effectiveness of the proposed method is demonstrated by both
synthetic data and field data.
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1 Introduction

In reflection seismology, recovering the subsurface reflectivity from the observed seis-
mic data lies in the core of target exploration. To retrieve the reflectivity, super-resolution
(someone called high-resolution) inversion methods are one of the mainstream approaches.
Following the research of [1], the super-resolution inversion can be treated as a process
to retrieve the fine-scale structures of an object from coarse-scale information only. It
may be more reasonable to use the term “seismic super-resolution” instead of the term
“seismic high-resolution”. Broadly speaking, the seismic deconvolution [2, 3], spectral
whitening [4] and so on can be regarded as some kinds of super-resolution processing.
In a narrow sense, the super-resolution inversion usually refers to the reflectivity inver-
sion [5–7].

It should be pointed out that the convolution model is the theoretical basis of super-
resolution inversion. Before super-resolution inversion, therefore, it is necessary to com-
pensate for the seismic data because the field seismic data is non-stationary with am-
plitude absorption and phase dispersion caused by intrinsic an-elasticity of subsurface
media [8–10]. To accomplish this, the Q values are required. Various methods have
been proposed to estimate the Q values [11–15], such as the methods in the Fourier-
frequency domain and the time-frequency domain. In the Fourier-frequency domain,
the approaches usually include the logarithm spectral ratio, centroid frequency shift, and
peak frequency shift methods. All amplitude spectra need to be calculated within a time
window. For the reflection seismic data, it is full of challenges to properly select the win-
dow function and window length. To adaptively select a proper window, [16] proposed
a method to divide non-stationary seismic traces into several stationary segments adap-
tively, and then gave a method to estimation Q values. In this work, we shall develop the
method of [16].

The compensation methods of attenuation effects (inverse Q filtering) can be applied
to make the non-stationary seismic data stationary [17–19]. It is well known that the
conventional inverse Q filtering methods can boost noise and introduce numerical insta-
bility. To address this issue, many improved strategies have been proposed, one of which
is implemented by the inverse problem framework [20]. [20] proposed a seismic absorp-
tion compensation method by the inversion scheme in a sparse domain. In this paper, we
compensate for the attenuation effects by this inverse framework in the sparse domain.

After compensation, the non-stationary seismic data is turned into the stationary one.
In the following parts, we review the super-resolution inversion based on the convolution
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model. Generally, the super-resolution inversion is ill-posed because of the band-limited
wavelet and noise. The regularization method can be used as a feasible approach to
address this issue. In general, the cost function is expressed as

J=min
r

{ f (r)+g(r)} , (1.1)

where f (r) is a loss function, and g(r) is a constraint function. The loss function f (r) is
usually selected as a square loss function. Based on the sparsity assumption of reflectiv-
ity, the constraint function is normally taken as the norm of the reflectivity, and the form
of g(r) is given by

g(x)=µ||r||
p
p , (1.2)

where µ denotes the regularization parameter, and ||r||
p
p indicates the Lp (0< p≤1) norm

of variable r. Theoretically, the L0 regularization yields the sparsest solution [21]. How-
ever, it is full of challenges to solve the L0 regularization, because it is a combinatory
optimization problem [22]. Generally, a common alternative is to consider the L1 regu-
larization because it is convex and can be solved efficiently. In addition, most researchers
apply L1 regularization to implement the reflectivity inversion. For instance, [23] pro-
posed a seismic sparse-spike deconvolution method to simultaneously recover wavelet
and reflectivity, where authors imposed L1 regularization to constrain the reflectivity.

Though the L1 regularization has become so widespread, the L1 regularization pe-
nalizes the larger coefficients more heavily than the smaller coefficients, unlike the more
democratic penalization of the L0 regularization [21], so that the L1 regularization will
cause the weak signal loss especially for noisy data. To address this issue, naturally,
another consideration is the Lp (0< p<1) regularization which outperforms the L1 reg-
ularization [22, 24–27]. The Lp (0< p< 1) regularization can achieve a sparser solution
in contrast to the L1 regularization [28]. Even though the Lp (0< p < 1) regularization
leads to a non-convex optimization problem, it is easier to be solved than the L0 regular-
ization. Based on the advantages of the Lp (0< p< 1) regularization, the Lp (0< p< 1)
regularization is applied to extract reflectivity from seismic traces in this paper.

To solve the Lp (0< p<1) regularization, the algorithm and regularization parameter
play crucial roles in the inversion results. Most Lp (0<p<1) regularization algorithms in
the literatures are somewhat opaque to researchers who are not well-versed in the theory
of optimization, so that it’s difficult to program. Therefore, to easily solve this inversion
problem by developing the work of [29], we propose a stable and simple algorithm, called
SVD-HPP [27], to solve the Lp (0< p≤ 1) regularization, which can turn Lp (0< p≤ 1)
regularization into a series of L2 regularizations. Then the existing algorithms can be
applied to solve each L2 regularization [30]. In this paper, the SVD method is adopted to
solve each L2 regularization for high inversion accuracy. Furthermore, the regularization
parameter is easy to be selected because some conventional methods, such as L-curve
method [31] and generalized cross-validation method (GCV) [32], are originally derived
based on the L2 regularization. Compared with the GCV method, the L-curve can obtain
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a better regularization parameter in most practical cases, which is applied to determine
the regularization parameters in this paper.

Eq. (1.1) is only applicable to the case of known wavelet. If the wavelet is unknown,
the alternating iterative inversion method is considered [7, 23], because of the challenges
to estimate an accurate seismic wavelet. According to the commutative law of convolu-
tion, the wavelet and reflectivity can be exchanged into the form of the forward matrix.
Then the objective function containing two types of variables, i.e., the reflectivity and
wavelet, is established, where the Lp (0< p < 1) norm is added to constrain the reflec-
tivity and a mixed norm is used to constrain the seismic wavelet. Finally, the inversion
problems are solved by alternating iteration and proximal splitting methods, where the
SVD-HPP is applied to solve the sub-problem of reflectivity. In this section, the regular-
ization parameters are determined by a manual operation like to the work of [7], because
of the coupling of multiple variables.

In this paper, we establish a theoretical system of super-resolution inversion in a non-
stationary frame, which is implemented by a two-stage method to extract reflectivity
from non-stationary seismic data. The first stage is the stabilization of time-varying data.
We first decompose the non-stationary seismic data into several segments, and then es-
timate a Q value in each segment. Finally, the attenuation compensation method in a
sparse domain can be applied to compensate for the non-stationary seismic data, so that
the time-varying seismic data are transformed into time-invariant data. In the second
stage, the super-resolution inversion method based on the Lp (0< p< 1) regularization
is applied to invert the reflectivity under the condition of known wavelet. Moreover,
the alternating iterative super-resolution inversion method is adopted to estimate the re-
flectivity and seismic wavelet simultaneously, where the Lp (0< p<1) norm and mixed
norm are added to constrain the reflectivity and wavelet, respectively. The Lp (0< p<1)
regularization in the objective functions can be solved by the SVD-HPP algorithm.

The structure of the paper is organized as follows: first, we elaborate on how to finish
the stabilization of non-stationary seismic traces. Second, we introduce the reflectivity
inversion method based on the Lp (0< p<1) regularization, and determine the selection
of p in Lp (0<p<1). Third, to avoid the effect of seismic wavelet, the alternating iterative
inversion is proposed to recover the reflectivity and wavelet simultaneously. Finally, both
synthetic and field examples are tested to demonstrate the effectiveness of the proposed
method. In Appendix B, the SVD-HPP algorithm is derived.

2 Method

To obtain the credible reflectivity coefficients from non-stationary seismic traces, the first
key point is to transform the non-stationary data to an approximately stationary one, and
then the proposed super-resolution inversion method is applied to recover the reflectiv-
ity. The proposed main work-flow is shown in Fig. 1 which clearly shows the complete
process to implement the super-resolution inversion of non-stationary seismic traces. The
following sections present the corresponding theories.
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Figure 1: Work-flow of non-stationary super-resolution inversion.

2.1 Stabilization of non-stationary seismic traces

In a viscoelastic medium, it’s full of challenges to enhance the resolution of seismic data
because of the time-varying seismic wavelet. However, the seismic wavelet usually does
not change quickly, which means that the amplitude of wavelet varies slowly, and it al-
lows us to partition the non-stationary seismic trace into several stationary segments ac-
cording to the similarity of wavelet amplitudes [16]. Then an equivalent Q value can be
estimated in each adaptive segment. Finally, the compensation method in the sparse do-
main is applied to eliminate the attenuation effect of seismic data [20]. For completeness
and convenience, the following steps review the corresponding theories.

Step 1: Extracting the amplitude spectrum of the seismic wavelet

To divide the non-stationary seismic trace into several approximately stationary seg-
ments, how to extract the amplitude spectrum of a seismic wavelet (ASSW) is a key. In
this paper, the method based on contraction operator mapping (COM method), proposed
by [33], is applied to obtain the ASSW. The COM method can extract an accurate ASSW
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without whiteness assumption of reflectivity and setting beforehand function form. The
algorithm of the COM method is listed in Algorithm 1.

Algorithm 1 Extracting the amplitude spectrum of a seismic wavelet (ASSW)

Input: the amplitude spectrum of a seismic trace S0(ω), k=1, p>0.
while condition do

1. Apply nonlinear transform S̃k−1(ω)= |Sk−1(ω)|p.

2. Normalization: Sk−1(ω)= S̃k−1(ω)∫ b
a S̃k−1(ξ)dξ

.

3. Sk(ω)=P[Sk−1;ω].
4. Inverse of the nonlinear transform Sk(ω)=(Sk(ω))1/p.
5. set Sk(ω)=Sk(ω), k= k+1.

Output: Sk(ω).

In Algorithm 1, the P[ f ;x] indicates a mapping operator expressed as

P[ f ;x]= cp(Fp( f ;x))α(1−Fp( f ;x))β, (2.1)

where Fp(Sk−1;ω)=
∫ ω

a
Sk−1(ξ)dξ and Sk−1(ξ) can be obtained by step 2 in Algorithm 1.

The effective frequency bandwidth of seismic trace is defined in (a,b) with 0≤ a<ω< b.
Appendix A shows how to determine the parameters cp, α, and β.

To test the COM method, Fig. 2(a) displays a reflectivity that satisfies the Cauchy
distribution. Fig. 2(b) shows a synthetic trace generated by convoluting a 30 Hz Ricker
wavelet with the reflectivity shown in Fig. 2(a). Then the COM method is applied to
extract the ASSW and the result is shown in Fig. 2(c). The estimated ASSW (black solid
line) is almost the same as the true one (red dashed line) by only one iteration. Therefore,
the COM method can be used to estimate an accurate ASSW.

Step 2: Adaptive partition of non-stationary seismic trace

Based on the work of [16], the same method is applied to divide the non-stationary seis-
mic trace adaptively, except for the ASSW method. Firstly, we define an atom window
function gj centering at the jth sampling point, and a collection of atom windows satisfies
a uniform partition of unity (POU) [34]. Secondly, a molecular-Gabor (MG) window is
constructed by the summation of neighboring atom windows, which can be formulated
as

Gk(t)=
Mk

∑
j=Mk−1+1

gj, (2.2)

where Mk−1 and Mk indicate the indexes of the first and last atom window’s center points
for the kth MG window which consists of (Mk−Mk−1) atom windows. The index of the
start point in the first MG window is M0, which is equal to 0. Thus, there is just the index
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(a)

(b) (c)

Figure 2: Extracting the amplitude spectrum. (a) the reflectivity satisfying the Cauchy distribution, (b) the
corresponding synthetic trace, and (c) the extracted amplitude spectrum. The black solid line is the result
obtained by the COM method, the red dotted line is the true ASSW, and the blue solid line is the amplitude
spectrum (AS) of Fig. 2(b).

Mk to be determined for the kth MG window. To determine Mk in the kth MG window, the
similarity of wavelet amplitude spectra is considered to establish an objective function

JMk
=max

Mk

< L0, L̃k>

||L0|| ||L̃k||
+ζ

< Lk−1, L̃k>

||Lk−1|| ||L̃k||
, (2.3)

where ||·|| is the L2 norm, and L0 denotes a reference wavelet amplitude spectrum which
can be obtained from well logs or shallow seismic data. L̃k denotes the estimated ASSW
in the undetermined kth MG window, i.e.,

L̃k =COM

[
s(t)

M̃k

∑
j=Mk−1+1

gj(t)

]
, (2.4)

where the operator COM represents the COM method to extract ASSW, s(t) is the non-
stationary seismic trace, and M̃k is the undetermined index of the kth MG window. Simi-
larly, Lk−1 is the ASSW in the determined (k−1)th MG window with known Mk−1. For the
parameter ζ in Eq. (2.3), one can select that ζ=0.5. By maximizing the function (2.3), the
kth MG window will be determined. Finally, one can implement the adaptive partition of
non-stationary seismic trace using the determined MG windows as follows,

s̃k(t)= s(t)
Mk

∑
j=Mk−1+1

gj(t), (2.5)

where s̃k(t) is the kth segment of non-stationary seismic trace s(t). For each segment,
some conventional methods can be applied to estimate Q values, such as the spectral
ratio [14], centroid frequency shift [35]. Here, the method proposed by [15] is applied to
finish the equivalent Q-estimation.
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(a)

(b)

(c)

(d)

(e)

Figure 3: Construction of MG windows. (a) the true reflectivity model, (b) the corresponding synthetic non-
stationary data with its envelope (red line) and envelope local peaks (black line), (c) the atom windows, (d)
the initial MG windows, and (e) the final MG windows.

Fig. 3 illustrates the partition of a non-stationary seismic trace. Fig. 3(a) and Fig. 3(b)
show the reflectivity and the corresponding non-stationary seismic trace, respectively.
To partition the seismic data, the atom windows are firstly constructed, as shown in
Fig. 3(c). Then, the initial MG windows are constructed using atom windows, as shown
in Fig. 3(d). Finally, Fig. 3(e) shows the final MG windows constructed by the theory
described above.



J. H. Gao et al. / CSIAM Trans. Appl. Math., 2 (2021), pp. 131-161 139

Step 3: Attenuation compensation method in the sparse domain

Because of the inelastic attenuation of the subsurface medium, the seismic trace is non-
stationary. In the time-frequency domain, the non-stationary seismic trace can be mod-
elled as

Y0(ω,τ)=Y(ω,τ)α(ω,τ), (2.6)

where Y0(ω,τ) represents the attenuated seismic data in the time-frequency domain and
Y(ω,τ) represents the Q-compensation seismic data in the time-frequency domain. The
corresponding matrices of them are represented as Y0 and Y. α(ω,τ) denotes the time-
frequency attenuation factor based on the Kolsky-Futterman Q model [36], written as

α(ω,τ)= e
− ωτ

2Q(τ) e
iln| ω

ωr
| ωτ

πQ(τ) , (2.7)

where ωr denotes the reference frequency, Q(τ) denotes the equivalent quality factor
which is inversely proportional to the absorption effect of the subsurface medium. In
Eq. (2.7), the first exponent indicates the amplitude attenuation, and the second describes
the velocity dispersion and phase rotation. It’s obvious Eq. (2.7) will be equal to one when
the Q(τ) value is equal to infinity.

To overcome the instability of inverse Q filtering, we regard Eq. (2.6) as an inverse
problem. According to the work of [20], Y0(ω,τ) and Y(ω,τ) can be treated as two time-
frequency representations using the Synchrosqueezing transform. Then the objective
function is constructed as

JỸ=min
Ỹ

||Ỹ0−Ψ̃Ỹ||22+µ||Ỹ||1, (2.8)

where Ỹ=vec(Y), Ỹ0=vec(Y0), and Ψ̃=diag(vec(Ψ)). The operator vec can vectorize the
two-dimensional (2D) data into a single column, the operator diag can transform a vector
into a diagonal matrix, and the attenuation matrix Ψ is represented as

Ψ=




α(ω1,τ1) α(ω1,τ2) ··· α(ω1,τq)
α(ω2,τ1) α(ω2,τ2) ··· α(ω2,τq)

...
...

...
...

α(ωρ,τ1) α(ωρ,τ2) ··· α(ωρ,τq)


, (2.9)

where ρ denotes the frequency sampling number and q denotes the time sampling num-
ber. The iteratively reweighted least-squares algorithm is used to solve Eq. (2.8) [20].

Because the phase compensation is an inherently stable process, we just consider am-
plitude compensation which will cause instability and amplify noise. Fig. 4 shows the
compensation results for the attenuated data with different Q values in the noise-free
case. Comparing with the conventional method without regularization, the attenuation
compensation method in the sparse domain (ACSD) can compensate for the amplitude
of attenuated data well without the amplification of numerical error.
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Figure 4: Attenuation compensation. The synthetic traces are generated by different Q values, and the corre-
sponding compensation results are calculated by the conventional method without regularization and the ACSD
method.

2.2 Super-resolution inversion based on the Lp (0< p<1) regularization

The conventional convolution model can be used to model the stationary seismic trace.
Therefore, the seismic trace y(t) after Q-compensation can be represented as

y(t)=w(t)∗r(t)+n(t), (2.10)

where r(t) denotes the reflectivity containing the information of subsurface medium,
w(t) is the seismic wavelet, n(t) denotes random noise, and ∗ indicates convolution op-
erator. We write Eq. (2.10) into matrix form as follows

y=Wr+n, (2.11)

where y=[y(t1),y(t2),··· ,y(tq)]T, r=[r(t1),r(t2),··· ,r(tq)]T, and n=[n(t1),n(t2),··· ,n(tq)]T.
T denotes transposition. The convolution matrix W consists of seismic wavelet with 2l+1
sampling points (2l+1≪q) where l refers to the half length of a wavelet. Considering a
known seismic wavelet, the cost function Jr is established as

Jr=min
r

1

2
||y−Wr||22+µ||r||

p
p . (2.12)

When p=1, Eq. (2.12) is equivalent to the conventional reflectivity inversion method. In
this paper, we will focus on the case where p is greater than 0 and less than 1, namely
Lp (0< p < 1) regularization. The Lp (0< p < 1) regularization can recover sparser so-
lutions from few measurements than the L1 regularization [24]. It has been widely used
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(a) (b)

Figure 5: Diagram of Lp norm. (a) the behavior of |x|p for various p-values, and (b) the feasible region of Lp
norm.

for compressive sensing and signal processing [37, 38], which indicates that the Lp regu-
larization is a potentially powerful new approach to the sparsity problem. Besides, the
Lp (0<p<1) regularization enjoys nice theoretical guarantee, which needs less restrictive
isometry conditions than those needed for L1 regularization [37].

Fig. 5(a) shows the curves of |x|p for various p-value, where the |x|p is the core of
the norm computation. It shows that as p goes to zero, the curve becomes an indicator
function, which means that the behavior of Lp (p→0) norm is closer to that of L0 norm.
Therefore the Lp (0<p<1) norm constraint is more effective to promote sparsity than the
L1 norm constraint. In addition, the curve of |x|p norm becomes concave as the p-value
goes to small, which implies that the Lp (0<p<1) regularization improves the shortcom-
ing of L1 norm that is sensitive to the large value. Therefore the Lp regularization has a
better amplitude-preservation over L1 regularization. Fig. 5(b) demonstrates the feasible
region of Lp(0< p≤ 1) norm. Obviously, if the data is disturbed by Gaussian noise, the
solution of Lp (0< p<1) regularization is sparser than that of the L1 regularization since
the dotted line intersects the contour line of the Lp (0 < p < 1) norm near the axes. It
means that the Lp (0< p<1) regularization is robust to noise.

The performance of Lp regularization depends on the selection of p-value. One may
ask what the best p-value is. Empirical evidence suggests that p=1/2 is a good choice in
at least a broad range of circumstances [39, 40]. For example, the research of [22] reveals
that the L1/2 regularization is the sparsest and most robust when 1/2≤ p<1, and the Lp

regularizations have a similar performance to the L1/2 regularization when 0<p<1/2. In
our study, many experiments have been tested and the conclusion is similar to that of [22].
Consequently, the L1/2 regularization is chosen as a representative of the Lp (0< p< 1)
regularization in this paper.

When p is less than 1, Eq. (2.12) is generally difficult to be solved because of its non-
convex property. To address this issue, the HPP algorithm proposed by [29] uses the
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Figure 6: Diagram of L-curve.

Hadmard product parametrization to transform the Lp (0< p< 1) regularization into a
series of simple L2 regularizations, to which the existing L2 regularization algorithms can
be efficiently applied, so that the non-convex problem will be solved easily. Here, the
SVD algorithm is applied to solve each Tikhonov regularization for high inversion accu-
racy, and the regularization parameter is determined adaptively by the L-curve method
(Fig. 6). Therefore, the improved algorithm is called SVD-HPP algorithm. Appendix B
shows the derivation of the SVD-HPP algorithm.

The pseudo-code of the proposed method is shown in Algorithm 2.

Algorithm 2 SVD-HPP algorithm to solve the Lp(0< p≤1) regularization

Input: Convolution matrix W, observed data y, initialized (u0
1,. . .,u0

k), i=1, k=2/p.
while condition do

for j=1 : k do

1. vi−1=(ui−1
1 ◦. . .◦ui−1

k )/ui−1
j .

2. GT =(vi−1⊗I)◦WT .
3. µ is obtained by the L-curve method.
4. Solve Jui−1

j
=minui−1

j
||y−Gui−1

j ||22+
µ
k ||u

i−1
j ||22 using the SVD method.

5. ui
j=ui−1

j .

6. ri =ui
1◦. . .◦ui

k.
7. i= i+1.

Output: r= ri.

2.3 Alternating iterative super-resolution inversion

To solve the objective function (2.12), the first thing is to estimate an accurate seismic
wavelet. Unfortunately, the estimation of seismic wavelet is full of challenges. Even
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though one obtains a seismic wavelet, the wavelet can not be guaranteed to be accu-
rate [7], so that the estimated reflectivity may be doubtful. To achieve a credible reflec-
tivity, the alternating iterative super-resolution inversion (AISRI) is an effective method
for estimating the reflectivity and wavelet simultaneously, which avoids the effect of the
wavelet estimation error.

Based on the commutative law of convolution, the following relation is derived,

y=Wr+n=Rw+n, (2.13)

where R denotes the convolution reflectivity matrix, and w refers to the seismic wavelet.
The reflectivity can be estimated by solving the following cost function alternately,

Jr,w=min
r,w

1

2
||y−Wr||22+Φ(r)+Ψ(w), (2.14)

where Φ and Ψ denote the constraint functions corresponding to r and w, respectively.
By setting the constraint functions reasonably, one can estimate credible reflectivity coef-
ficients and seismic wavelet simultaneously. For the reflectivity, the Lp (0<p<1) norm is

used to constrain the reflectivity for pursuing a sparser solution, namely Φ(r)=λ1||r||
p
p

with regularization parameter λ1. For the seismic wavelet, a mixed norm is designed to
constrain the seismic wavelet, which has the following form

Ψ(w)=λ2||w||
p̃
p̃+λ3||w||22, (2.15)

where 0 < p̃ ≤ 1, λ2 and λ3 denote the regularization parameters. The first L p̃ norm is
added to impose a sparse constraint on the seismic wavelet, because the size of the seis-
mic wavelet can be increased to q by zero-filling. Here, it’s enough to set p̃ to 1. The
second L2 norm is used to impose a smooth constraint on the seismic wavelet because of
its smooth waveform at the non-zero position. Bringing the above two constraint func-
tions into Eq. (2.14), the complete objective function is expressed as

Jr,w=min
r,w

1

2
||y−Wr||22+λ1||r||

p
p+λ2||w||

p̃
p̃+λ3||w||22. (2.16)

It is obvious that Eq. (2.16) is non-convex. Consequently, to solve this non-convex prob-
lem, we split the problem into two sub-problems solved in an iterative fashion. Consid-
ering multi-trace data, the objective functions of sub-problems are expressed as

JR̃ =min
R̃

1

2
||Y−WR̃||2F+λ1||R̃||

p
p, (2.17)

Jw=min
w

1

2
||vec(Y)−Rkw||22+λ2||w||

p̃
p̃+λ3||w||22, (2.18)

where Y, R̃, and N indicate multi-trace seismic data, reflectivity, and noise, respectively.
The k-trace matrix Rk can be given by

Rk =[R1;R2;···;Rk], (2.19)



144 J. H. Gao et al. / CSIAM Trans. Appl. Math., 2 (2021), pp. 131-161

where Ri denotes the convolution matrix consisting of the ith-trace reflectivity coefficient
(R̃i). In Eq. (2.17) and Eq. (2.18), λ1, λ2, and λ3 denote the constraint parameters that can
be determined by experience. Because of the coupling of wavelet, the L-curve method
can not be used to automatically determine the optimal regularization parameters, but it
can provide a nontrivial range of potentially optimal parameter. Note that Eq. (2.17) and
Eq. (2.18) hold under the assumption that there is only a seismic wavelet for the inverted
multi-trace seismic data.

The pseudo-code of the AISRI method is shown in Algorithm 3.

Algorithm 3 Alternating iterative super-resolution inversion algorithm (AISRI)

Input: Observation Y, initialized W0, regularization parameters λ1, λ2, and λ3, norm
parameters p= 1

2 and p̃=1, i=1.
while condition do

1. Solve R̃i=argminR̃
1
2 ||Y−Wi−1R̃||22+λ1||R̃||

p
p via the SVD-HPP algorithm.

2. Form the matrix R
i
k according to Eq. (2.19).

3. Solve wi = argminw
1
2 ||vec(Y)−R

i
kw||22+λ2||w||

p̃
p̃+λ3||w||22 via the proximal

method [23].
4. Form the convolution matrix Wi by wi.
5. i= i+1.

Output: R̃= R̃i, w=wi.

3 Application

In the following, we test the synthetic data to validate the proposed super-resolution
inversion method and the proposed work-flow. Then, the proposed work-flow is applied
to field data.

3.1 Synthetic data examples

1) The first experiment: In the first experiment, we have tested the super-resolution in-
version method based on the Lp (0 < p < 1) regularization, where the seismic wavelet
is known. The noise-free synthetic seismic trace is firstly generated by substituting the
reflectivity model and a 40Hz Ricker wavelet with 30◦ rotated phase into Eq. (2.10), as
shown in Fig. 7. Then, the L1/5, L1/4, L1/3, L1/2, and L1 regularizations are used for the
reflectivity inversion, and the inversion results are shown in Fig. 7. Through observation,
the inversion results are almost the same and very similar to the true reflectivity, which
is indistinguishable from the naked eye. To show the differences between the inversion
results, the error results are obtained by subtracting the estimated reflectivity coefficients
from the true ones, as shown in Fig. 8. It’s obvious that the error of the inversion result
obtained by the L1 regularization is the largest, and the L1/2 regularization generates the
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Figure 7: Reflectivity inversion based on the Lp (0< p≤1) regularization in the noise-free case. The first line
is the synthetic trace, the second line is the true reflectivity, and the other lines are the inversion results of the
L1/5, L1/4, L1/3, L1/2, and L1 regularizations, respectively.

Figure 8: Error results corresponds to the inversion results in Fig. 7.



146 J. H. Gao et al. / CSIAM Trans. Appl. Math., 2 (2021), pp. 131-161

Figure 9: Reflectivity inversion based on the Lp (0< p≤1) regularization in the case of noise. The first line is
the noisy synthetic trace, the second line is the true reflectivity, and the other lines are the results of the L1/5,
L1/4, L1/3, L1/2, and L1 regularizations, respectively.

smallest error. Therefore, the Lp (0< p<1) regularization can increase the inversion ac-
curacy in contrast with the L1 regularization, and the L1/2 regularization performs better
than the L1/5, L1/4, and L1/3 regularizations in this experiment.

To test the stability of the super-resolution inversion method based on the Lp (0< p<
1) regularization, the noise-free data shown in Fig. 7 is added 20% Gaussian noise, and
the noisy data is shown in Fig. 9. Fig. 9 shows the inversion results estimated by the L1/5,
L1/4, L1/3, L1/2, and L1 regularizations. Obviously, the inversion results of the L1/5, L1/4,
L1/3, and L1/2 regularizations with less energy loss are better than that of the L1 regu-
larization. Furthermore, Fig. 10 shows the error results corresponding to the L1/5, L1/4,
L1/3, and L1/2 regularizations. They are similar and smaller than the error corresponding
to the L1 regularization, which demonstrates that the Lp (0<p<1) regularization is more
robust to random noise. Comparatively, there is a significant energy loss and some false
spikes in the result of the L1 regularization with large error, as shown in Fig. 9 and Fig. 10.
Based on the above tests, the L1/2 regularization can be selected as a representative of the
Lp (0< p<1) regularization to invert a credible reflectivity.
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Figure 10: Error results corresponds to the inversion results in Fig. 9.

In the first experiment, the super-resolution inversion based on the Lp (0 < p < 1)
regularization is solved by the SVD-HPP algorithm, and the regularization parameter
is determined by the L-curve method at each iteration. Fig. 11(a) and Fig. 11(b) show
the determined regularization parameters of the above tests. It can be seen that the
Lp (0 < p < 1) regularization has faster convergence and requires fewer iterations than
the L1 regularization under the same stopping conditions. In addition, the parameter
of the Lp (0< p < 1) regularization is smaller than that of the L1 regularization during
convergence, which indicates that the former has a stronger sparse constraint, and the
parameter increases in the presence of noise to reduce false signals.

2) The second experiment: The first experiment is done base on a known seismic wavelet.
Nevertheless, in reality, the seismic wavelet is unknown, and the error of the estimated
wavelet will affect the estimation of reflectivity. The AISRI method is an effective strategy
to mitigate the influence of the seismic wavelet, which is tested in this experiment. First,
an initial wavelet is obtained by the method proposed by [33] before inversion. Then,
the L1/2 norm is used to constrain the reflectivity as a representative of the Lp (0< p<1)
norm. Fig. 12 shows the inversion results obtained by AISRI under the condition of noise-
free, where the synthetic seismic trace is the same as that in Fig. 7. Through observation,
one can learn that the L1/2 regularization performs better than the L1 regularization in
the case of the same wavelet constraint function. In other word, the L1/2 regularization
can obtain a relatively amplitude-preserving reflectivity in contrast with the L1 regular-
ization. The corresponding estimated wavelets are similar and close to the true wavelet.
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(a) (b)

Figure 11: Determination of the regularization parameters. (a) the regularization parameters of the L1/5, L1/4,
L1/3, L1/2, and L1 regularizations in the noise-free case, and (b) the regularization parameters of the L1/5,
L1/4, L1/3, L1/2, and L1 regularizations in the case of noise.

Fig. 13 displays the inversion results of noisy data (shown in Fig. 9). The reflectivity
inverted by the AISRI method with the L1/2 regularization is recovered well, where the
energy relationship is preserved and there are few false spikes. Even though there are
some differences between the estimated and true wavelets, it seems to have little effect
on the inversion reflectivity. By comparison, there is an obvious energy loss especially
for some weak signals in the inversion results of the AISRI method with the L1 regular-
ization, but the inversion wavelet is better than that of the AISRI method with the L1/2

regularization, the influence of which is not apparent. Finally and interestingly, we inves-
tigate the inversion results of the first and second experiments and find that the estimated
reflectivity in the second experiment is inferior to that in the first experiment due to the
couplings of wavelet and reflectivity.

3) The third experiment: In the third experiment, the proposed work-flow is tested. The
non-stationary seismic trace shown in Fig. 14 is generated by applying the attenuation
function to the synthetic data in Fig. 7 [41], where Q=80 for t=(0−0.55) s and Q=100
for t = (0.55−1) s. The true reflectivity model is the same as that in Fig. 7. Firstly, the
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Figure 12: Test of the AISRI method in the noise-free case. The first line is the true reflectivity, the second
line is the estimated reflectivity by the AISRI method with the L1/2 regularization, the third line is the esti-
mated reflectivity using the AISRI method with the L1 regularization, and the other lines are the corresponding
estimated seismic wavelets.

Figure 13: Test of the AISRI method in the case of noise. The first line is the true reflectivity, the second
line is the estimated reflectivity by the AISRI method with the L1/2 regularization, the third line is the esti-
mated reflectivity using the AISRI method with the L1 regularization, and the other lines are the corresponding
estimated seismic wavelets.
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Figure 14: Test of the proposed work-flow in the noise-free case. The first line is the synthetic non-stationary
data (Q= 80 for t=(0−0.55) s and Q= 100 for t=(0.55−1) s), the second line is the true reflectivity, the
third line is the final MG windows, the fourth line is the compensation result, the fifth line is the estimated
reflectivity, and the last line is the estimated wavelet.

MG windows are constructed according to the theory of adaptive partition. Then, the
equivalent Q values are estimated in the MG windows. Note that the estimated Q values
are not displayed here, because the accuracy of the estimated Q values will be reflected
in the following compensation results. The Q-compensation result obtained by ACSD is
shown in Fig. 14. Through observation on the compensation result and the synthetic sta-
tionary trace shown in Fig. 7, the compensation result is similar to the stationary data and
doesn’t magnify the numerical error. It implies that the ACSD method can compensate
for the non-stationary seismic data stably and the estimated Q-value is close to the true
Q-value. To recover the reflectivity, the AISRI method is used to invert the compensation
data. The inversion results are shown in Fig. 14. It can be observed that the inverted
reflectivity approaches the true reflectivity and the inverted wavelet approaches the true
wavelet.

To further validate the effectiveness of the proposed work-flow, we add 10% random
noise to the non-stationary trace, as shown in Fig. 15. Because of the existence of noise,
the MG windows are different from those in the noise-free case. The main reason is that
the noisy data need to be smoothed when estimating the envelope of seismic data, and
thus the initial MG windows are changed. Based on these MG windows, the Q-value is
estimated. Then the ACSD method is implemented to compensate for the non-stationary
data, and the compensation result is displayed in Fig. 15. It can be seen that the ampli-
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Figure 15: Test of the proposed work-flow in the case of noise. The first line is the synthetic non-stationary
data (Q=80 for t=(0−0.55) s and Q=100 for t=(0.55−1) s) with 10% random noise, the second line is the
true reflectivity, the third line is the final MG windows, the fourth line is the compensation result, the fifth line
is the estimated reflectivity, and the last line is the estimated wavelet.

tude of the attenuated result is approximately recovered and the noise is not amplified
obviously, only very little noise amplification. After compensation, the reflectivity is esti-
mated by the AISRI method, as shown in Fig. 15. The estimated reflectivity demonstrates
that most spike signals are inverted well with few signals loss, and the estimated wavelet
is close to the true wavelet which implies that the wavelet inversion is more robust to
noise.

To test the lateral continuity of the inversion results using the proposed work-flow, a
2D data is tested. Note that the inversion method is implemented in a single-trace man-
ner to facilitate the computer processing and reduce the block processing in this paper.
Fig. 16(a) shows the true reflectivity model which is a portion of the Marmousi II model.
Fig. 16(b) shows the synthetic noise-free data generated by substituting the reflectivity
model, a 40Hz Ricker wavelet with 30◦ phase, and Q values (i.e., Q=80 for t=(0−0.8) s
and Q = 100 for t = (0.8−1.56) s) into non-stationary equation [41]. Fig. 16(e) displays
the noisy data, where the noise level is 5% of the normalized noise (the maximum is 1).
Then the proposed work-flow is applied to process the noise-free and noisy data. The
compensation results and inverted reflectivity coefficients are shown in Fig. 16. Through
observation, the compensation results and the inverted reflectivity profiles have good
lateral continuity and remain the energy relationship, especially in the case of noise-free.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 16: Test of the proposed work-flow for 2D synthetic data. (a) the true reflectivity model, (b) the synthetic
non-stationary data (Q= 80 for t=(0−0.8) s and Q= 100 for t=(0.8−1.56) s), (c) the compensation result
corresponding to Fig. 16(b), (d) the estimated reflectivity corresponding to Fig. 16(c), (e) the synthetic non-
stationary data with 5% of the normalized noise (the maximum is 1), (f) the compensation result corresponding
to Fig. 16(e), and (g) the estimated reflectivity corresponding to Fig. 16(f).

3.2 Field data example

In this section, we use a 2D field data to test the proposed work-flow. Fig. 17 shows
a poststack field data, which is provided by China National Offshore Oil Corporation
(CNOOC). The size of this seismic data is 601 × 701 (time sampling number × trace
number), and the time interval is 1 ms. Besides, the field data has been processed via some
conventional processing flows, including geometric spreading amplitude compensation,
random noise attenuation, stack, and poststack time migration and so on.

The resolution of Fig. 17 is low because of the existing attenuation in the subsurface
medium, especially in the deep part. To enhance the resolution of the field data, we use
the proposed work-flow to compensate for the field data and then extract the reflectiv-
ity. Fig. 18 displays the compensation result by the ACSD method. After compensation,
the amplitude is compensated, and the vertical resolution and lateral continuity are im-
proved, especially at the location marked by black arrows and green ellipses, which is
conducive to characterizing the geological structures by geologists. Note that Fig. 17 and
Fig. 18 have the same color scale. Furthermore, Fig. 19 shows there normalized ampli-
tude spectra, where the first is the average amplitude spectrum of the whole time section,
the second is the average amplitude spectrum of the first half time section, and the third
is the average amplitude spectrum of the second half time section. Comparing the am-
plitude spectra before and after compensation, the frequency band after compensation
is obviously broadened. Therefore, the compensation result improves the inconsistency
of the amplitudes in deep and shallow layers, and the seismic wavelet existed in the
compensation result is nearly stationary in the propagation process.
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Figure 17: Field data.

Figure 18: Compensation result using the ACSD method.

After compensation, the AISRI method is performed to recover the reflectivity from
the compensation profile. Before inversion, an initial wavelet is obtained by the method
proposed by [33], where the amplitude is the average amplitude of the whole time sec-
tion. The inversion method is implemented in a single-trace manner. Fig. 20 shows the es-
timated wavelets of the first 20-trace data, each of which has a similar waveform. Fig. 21
shows the inverted reflectivity. It can be seen that the AISRI method can recover the re-
flectivity well, and the structure of field data is preserved. For instance, the curve struc-
ture is with good lateral continuity, and the details are described clearly, especially in the
green ellipses and black arrow positions. Moreover, the energy relationship is consistent
with that of the compensation data. To validate the accuracy of the inversion result, an
acoustic impedance log is inserted in Fig. 17, Fig. 18, and Fig. 21, which is filtered by
a low-pass filter with 250 Hz cutoff frequency. Through observation, the inversion re-
sults near the well can match the locations of different impedance layer boundaries well,
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Figure 19: Normalized amplitude spectra. The first is the average amplitude spectrum of the whole time
section, the second is the average amplitude spectrum of the first half time section, and the third is the average
amplitude spectrum of the second half time section.

Figure 20: Estimated seismic wavelets of the first 20-trace data.

which illustrates the accuracy of the estimated reflectivity using the proposed method
near the well. Fig. 22 shows the amplitude spectra of the compensation data and esti-
mated reflectivity near the well. Obviously, the resolution of seismic data is significantly
improved, and there is almost no low-frequency loss.

Finally, for clear observation on the results of each step in this work-flow, Fig. 23(a)
and Fig. 23(b) show the estimated results of the 170th and 550th traces of data using the
proposed work-flow, respectively. Obviously, the compensated result is well without
obvious false information and consistent with the original seismic data; the reflectivity is
recovered reasonably.
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Figure 21: Estimated reflectivity using the AISRI method.

Figure 22: Amplitude spectrum of the estimated reflectivity near the well.

The above results show that the proposed work-flow can compensate for the field
data and extract the reflectivity from the compensation data well.

4 Discussion

A relative amplitude-preserving super-resolution inversion method is proposed, which
can be used to invert the non-stationary reflection seismic data. There are three main con-
tributions in this paper. The first one is that an effective non-stationary inversion frame
is devised to implement the super-resolution inversion of non-stationary seismic data,
which mainly includes two-step, i.e., the stabilization of non-stationary seismic traces
and the super-resolution inversion. The second one is that the Lp (0 < p < 1) regular-
ization is imposed to constrain the reflectivity, which can obtain a sparser solution. In
addition, a simple and effective algorithm is provided to solve the Lp (0< p≤1) regular-
ization problem, and the regularization parameters at each iteration can be determined
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(a)

(b)

Figure 23: Test of proposed work-flow for field data. (a) the results of the 170th trace of data, and (b) the
results of the 550th trace of data.

adaptively in solving the problem. The last one is that the AISRI method is introduced to
estimate the reflectivity and seismic wavelet simultaneously in the case of an unknown
wavelet, which can reduce the influence brought by an estimated wavelet.

However, it should be noted that there are some unresolved problems. In the stabi-
lization process of non-stationary seismic traces, the accuracy of the estimated Q value is
affected by various factors, e.g., the influence of thin layer interference. To obtain credi-
ble Q values, the well logs will be considered in our future work. The other problem is
the determination of all regularization parameters for the AISRI. It is full of challenges
to determine multiple parameters at the same time because of their couplings. Though
some methods, such as GCV, have been proposed to determine multiple parameters, the
computational cost is large and the methods are affected by noise. Recently, learning in a
functional analytic regularization has been a hot topic [42], which opens up a new way to
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solve the inverse problem. In our future work, we will implement the super-resolution
inversion using the deep learning methods, where the regularization parameters and
constraint functions can be learned. In addition, the proposed method is suitable for a
single trace or 2D data. However, we need to vectorize the 2D data into single column
data to finish the inversion when considering 2D data. Therefore, the lateral informa-
tion of 2D data is not fully used in the proposed method, which may affect the lateral
continuity of inversion results. To obtain better results, the proposed method can be ex-
tended to implement the Lp,q (0< p≤ 1, q≥ 1) regularization inversion [43] which adds
the Lp (0< p≤1) constraint along the time direction and the Lq (q≥1) constraint along
the space direction.

5 Conclusion

A non-stationary super-resolution inversion system is proposed in this paper, which can
be applied in the non-stationary field data. There is mainly two-step, the first step of
which devotes to making the non-stationary seismic data stationary and the second step
of which is the super-resolution inversion of stationary seismic traces. In the first step,
it includes the division of non-stationary seismic traces, the extraction of wavelet ampli-
tude spectrum, the calculation of Q values, and the compensation of non-stationary seis-
mic traces. The above methods are based on the existing researches, which are developed
and applied by us effectively. The super-resolution inversion in the second step is a novel
inversion method proposed in this paper to obtain reflectivity, where the Lp (0< p< 1)
norm and a mixed-norm are imposed to constrain the reflectivity and wavelet, respec-
tively; Further, a novel SVD-HPP algorithm with adaptive regularization parameters is
introduced to solve the Lp (0< p≤1) regularization. Finally, the synthetic and field data
examples validate the effectiveness of the proposed methods.
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Appendix A: Determination of parameters in the COM method

There are three parameters, cp, α and β, in Eq. (2.1). To determine these parameters,
one can use the L2 norm to measure the difference between Sk−1(ω) and P[Sk−1;ω].
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To linearize the inverse problem, apply the logarithmic transformation to Sk−1(ω) and
P[Sk−1;ω]. Then the objective function is constructed as follows,

Jα,β,c=min
α,β,c

1

2
||log(Sk−1(ω))−log(P[Sk−1;ω])||22, (A.1)

where c= logcp. The solution of function (A.1) in the least-square sense is

m=(ATA)−1ATs, (A.2)

where s=[logSk−1(ω1),logSk−1(ω1+∆ω),logSk−1(ω1+2∆ω),··· ,logSk−1(ω2)]T, and m=
[c,α,β]T . The frequency range is [ω1,ω2] and the frequency sampling interval is ∆ω. The
matrix A is expressed as

A=




1 logFp(Sk−1;ω1) log[1−Fp(Sk−1;ω1)]
1 logFp(Sk−1;ω1+∆ω) log[1−Fp(Sk−1;ω1+∆ω)]
...

...
...

1 logFp(Sk−1;ω2) log[1−Fp(Sk−1;ω2)]


. (A.3)

Appendix B: The SVD-HPP algorithm

When p is less than 1, Eq. (2.12) is generally difficult to be solved because of its non-
convex property. However, if the Lp (0< p<1) regularization is transformed into a series
of simple L2 regularizations [29], to which the existing L2 regularization algorithms, such
as the SVD method, can be efficiently applied, the non-convex problem will be solved
easily. To introduce the algorithm, the cost function (2.12) is rewritten as

Jr =min
r

rTDr−2rTL+µ||r||
p
p , (B.1)

where D=WTW and L=WTy. Because the matrix D is symmetric and positive definite,
the quadratic optimization problem minrrTDr−2rTL is equivalent to solving the system
of equation Dr=L, which is the normal equations for the least squares problem [44]. The
reason why Eq. (2.12) is changed into Eq. (B.1) is to delete the term independent from
the variable in Eq. (2.12). Now reparametrize the model r as u◦v in the case of p = 1,
where ◦ is the Hadmard (element-wise) product. The u and v can be calculated by the L2

regularization, corresponding to the following objective function

Ju,v=min
u,v

(u◦v)TD(u◦v)−2(u◦v)TL+µ(uTu+vTv)/2, (B.2)

where Ju,v is differentiable and biconvex and its local minimum can be found by using
a very simple alternating Tikhonov regularization (L2 regularization) method. Besides,
there is a correspondence between the minimums of Ju,v and Jr [29]. Namely, any local
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minimum (û,v̂) of Ju,v can provide a global optimal value r̂ of Jr. To find such minimum,
we rewrite (u◦v)TD(u◦v) as uT(D◦vvT)u, and (u◦v)TL as uT(v◦L), and thus,

Ju,v=min
u,v

uT
(

D◦vvT+
µ

2

)
u−2uT(v◦L)+µvTv/2. (B.3)

Fix v to solve u as

ũ=
(

D◦vvT+
µ

2
I′
)−1

(L◦v), (B.4)

where I′ indicates a unit diagonal matrix. Similarly, the ṽ can be obtained

ṽ=
(

D◦uuT+
µ

2
I′
)−1

(L◦u). (B.5)

The forms of Eq. (B.4) and Eq. (B.5) are similar to the conventional Tikhonov regulariza-
tion solution. To see this, rewrite (v⊗I)◦WT and (u⊗I)◦WT as Gv

T and Gu
T. I indicates

an unit row vector and the sign ⊗ is a tensor product. Then Eq. (B.4) and Eq. (B.5) can be
written as the conventional Tikhonov regularization function

Jũ =min
ũ

||y−Gvũ||22+
µ

2
||ũ||22, (B.6)

Jṽ =min
ṽ

||y−Guṽ||22+
µ

2
||ṽ||22. (B.7)

It’s obvious that Eq. (B.6) and Eq. (B.7) represent the conventional Tikhonov regulariza-
tion. Then we adopt the SVD method to iteratively solve them instead of direct inversion.
The book written by [44] contains the SVD implementation of Tikhonov regularization.

The above algorithm is derived in the case of p=1. If considering 0< p<1, the model
r can be reparametrized as u1◦. . .◦uk. Eq. (B.2) is extended to

Ju1 ,...,uk
= min

u1,...,uk

(u1◦. . .◦uk)
TD(u1◦. . .◦uk)−2(u1◦. . .◦uk)

TL+
µ

k
(uT

1 u1+ . . .+uT
k uk), (B.8)

where p = 2/k. Eq. (B.2) is the special case of Eq. (B.8) when k = 2. Then we take the
derivative of Eq. (B.8) with respect to each parameter, and adopt the SVD method to iter-
atively solve each L2 regularization problem. One can just change the value of parameter
k to solve other Lp (0< p<1) regularization, if need be.
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