arrow
Volume 25, Issue 3
A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$

Huilin Zhu

Commun. Math. Res., 25 (2009), pp. 282-288.

Published online: 2021-07

Export citation
  • Abstract

By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$.



  • Keywords

binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CMR-25-282, author = {Huilin and Zhu and and 18167 and and Huilin Zhu}, title = {A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$}, journal = {Communications in Mathematical Research }, year = {2021}, volume = {25}, number = {3}, pages = {282--288}, abstract = {

By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$.



}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19336.html} }
TY - JOUR T1 - A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$ AU - Zhu , Huilin JO - Communications in Mathematical Research VL - 3 SP - 282 EP - 288 PY - 2021 DA - 2021/07 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19336.html KW - binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method. AB -

By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$.



HuilinZhu. (2021). A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$. Communications in Mathematical Research . 25 (3). 282-288. doi:
Copy to clipboard
The citation has been copied to your clipboard