TY - JOUR T1 - A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$ AU - Zhu , Huilin JO - Communications in Mathematical Research VL - 3 SP - 282 EP - 288 PY - 2021 DA - 2021/07 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19336.html KW - binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method. AB -
By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.