arrow
Volume 34, Issue 2
Fekete-Szegö Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator

Dong Guo, Zongtao Li & Liangpeng Xiong

Commun. Math. Res., 34 (2018), pp. 184-192.

Published online: 2019-12

Export citation
  • Abstract

By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.


  • Keywords

analytic and meromorphic function, starlike and convex function, hypergeometric function, Fekete-Szegö problem, Dziok-Srivastava operator, Hadamard product

  • AMS Subject Headings

30C45, 30A20, 34A40

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

gd791217@163.com (Dong Guo)

  • BibTex
  • RIS
  • TXT
@Article{CMR-34-184, author = {Dong and Guo and gd791217@163.com and 5905 and Foundation Department, Chuzhou Vocational and Technical College, Chuzhou, Anhui, 239000 and Dong Guo and Zongtao and Li and and 5981 and Foundation Department, Guangzhou Civil Aviation College, Guangzhou, 510403 and Zongtao Li and Liangpeng and Xiong and and 5908 and School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 and Liangpeng Xiong}, title = {Fekete-Szegö Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {34}, number = {2}, pages = {184--192}, abstract = {

By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.


}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2018.02.11}, url = {http://global-sci.org/intro/article_detail/cmr/13517.html} }
TY - JOUR T1 - Fekete-Szegö Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator AU - Guo , Dong AU - Li , Zongtao AU - Xiong , Liangpeng JO - Communications in Mathematical Research VL - 2 SP - 184 EP - 192 PY - 2019 DA - 2019/12 SN - 34 DO - http://doi.org/10.13447/j.1674-5647.2018.02.11 UR - https://global-sci.org/intro/article_detail/cmr/13517.html KW - analytic and meromorphic function, starlike and convex function, hypergeometric function, Fekete-Szegö problem, Dziok-Srivastava operator, Hadamard product AB -

By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.


Dong Guo, Zongtao Li & Liangpeng Xiong. (2019). Fekete-Szegö Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator. Communications in Mathematical Research . 34 (2). 184-192. doi:10.13447/j.1674-5647.2018.02.11
Copy to clipboard
The citation has been copied to your clipboard