@Article{CMR-34-184, author = {Guo , DongLi , Zongtao and Xiong , Liangpeng}, title = {Fekete-Szegö Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {34}, number = {2}, pages = {184--192}, abstract = {
By using the hypergeometric function defined by the Dziok-Srivastava operator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö inequalities for the meromorphic function $f(z)$ for which $\alpha-\dfrac{1+\alpha\bigg\{1+\dfrac{z[_lI_mf(z)]''}{[_lI_mf(z)]'}\bigg\}}{\dfrac{z[_lI_mf(z)]'}{_lI_mf(z)}}$ $\prec\varphi (z)$ $\Big(\alpha\in{\bf C}-\Big\{\dfrac{1}{2},\,1\Big\}\Big)$.