arrow
Volume 33, Issue 3
Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules

Xin Ma & Youyi Zhao

Commun. Math. Res., 33 (2017), pp. 281-288.

Published online: 2019-11

Export citation
  • Abstract

In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$. We show that the existence of a right recollement of $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ with respect to $\mathcal{K}^{–,bscp}(\mathcal{SCP})$, $\mathcal{K}_{bscp}(\mathcal{SCP})$ and $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some cases.

  • AMS Subject Headings

18E30, 18G10

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

maxin263@126.com (Xin Ma)

  • BibTex
  • RIS
  • TXT
@Article{CMR-33-281, author = {Ma , Xin and Zhao , Youyi}, title = {Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {33}, number = {3}, pages = {281--288}, abstract = {

In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$. We show that the existence of a right recollement of $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ with respect to $\mathcal{K}^{–,bscp}(\mathcal{SCP})$, $\mathcal{K}_{bscp}(\mathcal{SCP})$ and $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some cases.

}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2017.03.08}, url = {http://global-sci.org/intro/article_detail/cmr/13387.html} }
TY - JOUR T1 - Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules AU - Ma , Xin AU - Zhao , Youyi JO - Communications in Mathematical Research VL - 3 SP - 281 EP - 288 PY - 2019 DA - 2019/11 SN - 33 DO - http://doi.org/10.13447/j.1674-5647.2017.03.08 UR - https://global-sci.org/intro/article_detail/cmr/13387.html KW - homotopy category, recollement, stable $t$-structure AB -

In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$. We show that the existence of a right recollement of $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ with respect to $\mathcal{K}^{–,bscp}(\mathcal{SCP})$, $\mathcal{K}_{bscp}(\mathcal{SCP})$ and $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some cases.

Ma , Xin and Zhao , Youyi. (2019). Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules. Communications in Mathematical Research . 33 (3). 281-288. doi:10.13447/j.1674-5647.2017.03.08
Copy to clipboard
The citation has been copied to your clipboard