TY - JOUR T1 - Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules AU - Ma , Xin AU - Zhao , Youyi JO - Communications in Mathematical Research VL - 3 SP - 281 EP - 288 PY - 2019 DA - 2019/11 SN - 33 DO - http://doi.org/10.13447/j.1674-5647.2017.03.08 UR - https://global-sci.org/intro/article_detail/cmr/13387.html KW - homotopy category, recollement, stable $t$-structure AB -
In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$. We show that the existence of a right recollement of $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ with respect to $\mathcal{K}^{–,bscp}(\mathcal{SCP})$, $\mathcal{K}_{bscp}(\mathcal{SCP})$ and $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some cases.