Volume 32, Issue 4
Oscillatory Strongly Singular Integral Associated to the Convex Surfaces of Revolution

J. C. Chen, S. Y. He & X. R. Zhu

Anal. Theory Appl., 32 (2016), pp. 396-404

Published online: 2016-10

Preview Full PDF 559 4966
Export citation
  • Abstract
Here we consider the following strongly singular integral $$T_{\Omega,\gamma,\alpha,\beta}f(x,t)=\int_{R^n} e^{i|y|^{-\beta}}\frac {\Omega(\frac{y}{|y|})}{|y|^{n+\alpha}}f(x-y,t-\gamma(|y|))dy,$$ where $\Omega\in L^p(S^{n-1}),$ $ p>1,$ $n>1,$ $\alpha>0$ and $\gamma$ is convex on $(0,\infty)$. We prove that there exists $A(p,n)>0$ such that if $\beta>A(p,n)(1+\alpha)$, then $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself and the constant is independent of $\gamma$. Furthermore, when $\Omega\in C^\infty(S^{n-1})$, we will show that $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself only if $\beta>2\alpha$ and the constant is independent of $\gamma$.
  • Keywords

Oscillatory strongly rough singular integral rough kernel surfaces of revolution

  • AMS Subject Headings

42B20 42B35

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-32-396, author = {J. C. Chen, S. Y. He and X. R. Zhu}, title = {Oscillatory Strongly Singular Integral Associated to the Convex Surfaces of Revolution}, journal = {Analysis in Theory and Applications}, year = {2016}, volume = {32}, number = {4}, pages = {396--404}, abstract = {Here we consider the following strongly singular integral $$T_{\Omega,\gamma,\alpha,\beta}f(x,t)=\int_{R^n} e^{i|y|^{-\beta}}\frac {\Omega(\frac{y}{|y|})}{|y|^{n+\alpha}}f(x-y,t-\gamma(|y|))dy,$$ where $\Omega\in L^p(S^{n-1}),$ $ p>1,$ $n>1,$ $\alpha>0$ and $\gamma$ is convex on $(0,\infty)$. We prove that there exists $A(p,n)>0$ such that if $\beta>A(p,n)(1+\alpha)$, then $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself and the constant is independent of $\gamma$. Furthermore, when $\Omega\in C^\infty(S^{n-1})$, we will show that $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself only if $\beta>2\alpha$ and the constant is independent of $\gamma$.}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2016.v32.n4.7}, url = {http://global-sci.org/intro/article_detail/ata/4679.html} }
TY - JOUR T1 - Oscillatory Strongly Singular Integral Associated to the Convex Surfaces of Revolution AU - J. C. Chen, S. Y. He & X. R. Zhu JO - Analysis in Theory and Applications VL - 4 SP - 396 EP - 404 PY - 2016 DA - 2016/10 SN - 32 DO - http://doi.org/10.4208/ata.2016.v32.n4.7 UR - https://global-sci.org/intro/article_detail/ata/4679.html KW - Oscillatory strongly rough singular integral KW - rough kernel KW - surfaces of revolution AB - Here we consider the following strongly singular integral $$T_{\Omega,\gamma,\alpha,\beta}f(x,t)=\int_{R^n} e^{i|y|^{-\beta}}\frac {\Omega(\frac{y}{|y|})}{|y|^{n+\alpha}}f(x-y,t-\gamma(|y|))dy,$$ where $\Omega\in L^p(S^{n-1}),$ $ p>1,$ $n>1,$ $\alpha>0$ and $\gamma$ is convex on $(0,\infty)$. We prove that there exists $A(p,n)>0$ such that if $\beta>A(p,n)(1+\alpha)$, then $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself and the constant is independent of $\gamma$. Furthermore, when $\Omega\in C^\infty(S^{n-1})$, we will show that $T_{\Omega,\gamma,\alpha,\beta}$ is bounded from $L^2(R^{n+1})$ to itself only if $\beta>2\alpha$ and the constant is independent of $\gamma$.
J. C. Chen, S. Y. He & X. R. Zhu. (1970). Oscillatory Strongly Singular Integral Associated to the Convex Surfaces of Revolution. Analysis in Theory and Applications. 32 (4). 396-404. doi:10.4208/ata.2016.v32.n4.7
Copy to clipboard
The citation has been copied to your clipboard