Anal. Theory Appl., 32 (2016), pp. 103-121.
Published online: 2016-04
Cited by
- BibTex
- RIS
- TXT
Suppose $\vec{b}=(b_1,\cdots,b_m)\in (BMO)^m,$ $ I_{\alpha,m}^{{\Pi b}}$ is the iterated commutator of $\vec{b}$ and the $m$-linear multilinear fractional integral operator $I_{\alpha,m}$. The purpose of this paper is to discuss the boundedness properties of $I_{\alpha,m}$ and $I_{\alpha,m}^{{\Pi b}}$ on generalized Herz spaces with general Muckenhoupt weights.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2016.v32.n2.1}, url = {http://global-sci.org/intro/article_detail/ata/4658.html} }Suppose $\vec{b}=(b_1,\cdots,b_m)\in (BMO)^m,$ $ I_{\alpha,m}^{{\Pi b}}$ is the iterated commutator of $\vec{b}$ and the $m$-linear multilinear fractional integral operator $I_{\alpha,m}$. The purpose of this paper is to discuss the boundedness properties of $I_{\alpha,m}$ and $I_{\alpha,m}^{{\Pi b}}$ on generalized Herz spaces with general Muckenhoupt weights.