Anal. Theory Appl., 31 (2015), pp. 184-206.

Published online: 2017-04

Cited by

- BibTex
- RIS
- TXT

Let $L = L_0+V$ be the higher order Schrödinger type operator where $L_0$ is a homogeneous elliptic operator of order $2m$ in divergence form with bounded coefficients and $V$ is a real measurable function as multiplication operator (e.g., including $(−∆) ^m+V (m∈\mathbb{N})$ as special examples). In this paper, assume that $V$ satisfies a strongly subcritical form condition associated with $L_0$, the authors attempt to establish a theory of Hardy space $H^p_L(\mathbb{R}^n) (0 < p ≤ 1)$ associated with the higher order Schrödinger type operator $L$. Specifically, we first define the molecular Hardy space $H^p_L(\mathbb{R}^n)$ by the so-called $(p,q,ε,M)$ molecule associated to $L$ and then establish its characterizations by the area integral defined by the heat semigroup $e^{−tL}$.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2015.v31.n2.8}, url = {http://global-sci.org/intro/article_detail/ata/4633.html} }Let $L = L_0+V$ be the higher order Schrödinger type operator where $L_0$ is a homogeneous elliptic operator of order $2m$ in divergence form with bounded coefficients and $V$ is a real measurable function as multiplication operator (e.g., including $(−∆) ^m+V (m∈\mathbb{N})$ as special examples). In this paper, assume that $V$ satisfies a strongly subcritical form condition associated with $L_0$, the authors attempt to establish a theory of Hardy space $H^p_L(\mathbb{R}^n) (0 < p ≤ 1)$ associated with the higher order Schrödinger type operator $L$. Specifically, we first define the molecular Hardy space $H^p_L(\mathbb{R}^n)$ by the so-called $(p,q,ε,M)$ molecule associated to $L$ and then establish its characterizations by the area integral defined by the heat semigroup $e^{−tL}$.

*Analysis in Theory and Applications*.

*31*(2). 184-206. doi:10.4208/ata.2015.v31.n2.8