Trigonometric Approximation in Reflexive Orlicz Spaces
Anal. Theory Appl., 27 (2011), pp. 125-137.
Published online: 2011-04
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-27-125,
author = {Ali Guven},
title = {Trigonometric Approximation in Reflexive Orlicz Spaces},
journal = {Analysis in Theory and Applications},
year = {2011},
volume = {27},
number = {2},
pages = {125--137},
abstract = {
The Lipschitz classes $Lip(\alpha,M)$, $0 < \alpha \leq1$ are defined for Orlicz space generated by the Young function $M$, and the degree of approximation by matrix transforms of $f \in Lip(\alpha,M)$ is estimated by $n^{−\alpha}$.
}, issn = {1573-8175}, doi = {https://doi.org/10.1007/s10496-011-0125-4}, url = {http://global-sci.org/intro/article_detail/ata/4586.html} }
TY - JOUR
T1 - Trigonometric Approximation in Reflexive Orlicz Spaces
AU - Ali Guven
JO - Analysis in Theory and Applications
VL - 2
SP - 125
EP - 137
PY - 2011
DA - 2011/04
SN - 27
DO - http://doi.org/10.1007/s10496-011-0125-4
UR - https://global-sci.org/intro/article_detail/ata/4586.html
KW - Lipschitz class, matrix transform, modulus of continuity, Nölund transform, Orlicz space.
AB -
The Lipschitz classes $Lip(\alpha,M)$, $0 < \alpha \leq1$ are defined for Orlicz space generated by the Young function $M$, and the degree of approximation by matrix transforms of $f \in Lip(\alpha,M)$ is estimated by $n^{−\alpha}$.
Ali Guven. (2011). Trigonometric Approximation in Reflexive Orlicz Spaces.
Analysis in Theory and Applications. 27 (2).
125-137.
doi:10.1007/s10496-011-0125-4
Copy to clipboard