On the Negative Extremums of Fundamental Functions of Lagrange Interpolation Based on Chebyshev Nodes
Anal. Theory Appl., 29 (2013), pp. 348-357.
Published online: 2013-11
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-29-348,
author = {},
title = {On the Negative Extremums of Fundamental Functions of Lagrange Interpolation Based on Chebyshev Nodes},
journal = {Analysis in Theory and Applications},
year = {2013},
volume = {29},
number = {4},
pages = {348--357},
abstract = {
In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2013.v29.n4.4}, url = {http://global-sci.org/intro/article_detail/ata/4529.html} }
TY - JOUR
T1 - On the Negative Extremums of Fundamental Functions of Lagrange Interpolation Based on Chebyshev Nodes
JO - Analysis in Theory and Applications
VL - 4
SP - 348
EP - 357
PY - 2013
DA - 2013/11
SN - 29
DO - http://doi.org/10.4208/ata.2013.v29.n4.4
UR - https://global-sci.org/intro/article_detail/ata/4529.html
KW - Negative extremum, Lagrange interpolation, Chebyshev polynomial, fundamental function of interpolation.
AB -
In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.
L. Y. Zhu & X. Xu. (1970). On the Negative Extremums of Fundamental Functions of Lagrange Interpolation Based on Chebyshev Nodes.
Analysis in Theory and Applications. 29 (4).
348-357.
doi:10.4208/ata.2013.v29.n4.4
Copy to clipboard