Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
Anal. Theory Appl., 30 (2014), pp. 224-235.
Published online: 2014-06
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-30-224,
author = {},
title = {Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents},
journal = {Analysis in Theory and Applications},
year = {2014},
volume = {30},
number = {2},
pages = {224--235},
abstract = {
In this paper, we will prove the boundedness of Hardy type operators $H_{\beta(x)}$ and $H^{\ast}_{\beta(x)}$of variable order $\beta(x)$ on Herz spaces $K^{\alpha(\cdot)}_{p(\cdot), q}$and $\dot{K}^{\alpha(\cdot)}_{p(\cdot), q}$, where $\alpha(\cdot)$ and $p(\cdot)$ are both variable.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2014.v30.n2.8}, url = {http://global-sci.org/intro/article_detail/ata/4487.html} }
TY - JOUR
T1 - Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
JO - Analysis in Theory and Applications
VL - 2
SP - 224
EP - 235
PY - 2014
DA - 2014/06
SN - 30
DO - http://doi.org/10.4208/ata.2014.v30.n2.8
UR - https://global-sci.org/intro/article_detail/ata/4487.html
KW - Herz spaces, Hardy type operators, variable exponent.
AB -
In this paper, we will prove the boundedness of Hardy type operators $H_{\beta(x)}$ and $H^{\ast}_{\beta(x)}$of variable order $\beta(x)$ on Herz spaces $K^{\alpha(\cdot)}_{p(\cdot), q}$and $\dot{K}^{\alpha(\cdot)}_{p(\cdot), q}$, where $\alpha(\cdot)$ and $p(\cdot)$ are both variable.
M. Wang, L. S. Shu & M. Qu. (1970). Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents.
Analysis in Theory and Applications. 30 (2).
224-235.
doi:10.4208/ata.2014.v30.n2.8
Copy to clipboard